Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:05:21.723Z Has data issue: false hasContentIssue false

The role of the patch test in 2D atomistic-to-continuum coupling methods

Published online by Cambridge University Press:  27 March 2012

Christoph Ortner*
Affiliation:
Mathematics Institute, Zeeman Building, University of Warwick, CV4 7AL Coventry, UK. c.ortner@warwick.ox.ac.uk
Get access

Abstract

For a general class of atomistic-to-continuum coupling methods, coupling multi-body interatomic potentials with a P1-finite element discretisation of Cauchy–Born nonlinear elasticity, this paper adresses the question whether patch test consistency (or, absence of ghost forces) implies a first-order error estimate. In two dimensions it is shown that this is indeed true under the following additional technical assumptions: (i) an energy consistency condition, (ii) locality of the interface correction, (iii) volumetric scaling of the interface correction, and (iv) connectedness of the atomistic region. The extent to which these assumptions are necessary is discussed in detail.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

A. Abdulle, P. Lin and A. Shapeev, Homogenization-based analysis of quasicontinuum method for complex crystals. arXiv:1006.0378.
Admal, N.C. and Tadmor, E.B., A unified interpretation of stress in molecular systems. J. Elasticity 100 (2010) 63143. Google Scholar
Alicandro, R. and Cicalese, M., A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36 (2004) 137 (electronic). Google Scholar
Arnold, D.N. and Falk, R.S., A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 12761290. Google Scholar
Badia, S., Parks, M., Bochev, P., Gunzburger, M. and Lehoucq, R., On atomistic-to-continuum coupling by blending. Multiscale Model. Simul. 7 (2008) 381406. Google Scholar
G.P. Bazeley, Y.K. Cheung, B.M. Irons and O.C. Zienkiewicz, Triangle elements in plate bending : conforming and nonconforming solutions, in Proc. Conf. Matrix Meth. Struc. Mech. Wright Patterson AFB, Ohio (1966).
T. Belytschko, W.K. Liu and B. Moran, Nonlinear finite elements for continua and structures. John Wiley & Sons Ltd., Chichester (2000).
P.G. Ciarlet, The finite element method for elliptic problems. Classics in Appl. Math. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 40 (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
M. Dobson, There is no pointwise consistent quasicontinuum energy. arXiv:1109.1897.
Dobson, M. and Luskin, M., Analysis of a force-based quasicontinuum approximation. ESAIM : M2AN 42 (2008) 113139. Google Scholar
Dobson, M. and Luskin, M., An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM : M2AN 43 (2009) 591604. Google Scholar
Dobson, M. and Luskin, M., An optimal order error analysis of the one-dimensional quasicontinuum approximation. SIAM J. Numer. Anal. 47 (2009) 24552475. Google Scholar
Dobson, M., Elliot, R., Luskin, M. and Tadmor, E., A multilattice quasicontinuum for phase transforming materials : cascading cauchy born kinematics. J. Computer-Aided Mater. Design 14 (2007) 219237. Google Scholar
Dobson, M., Luskin, M. and Ortner, C., Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids 58 (2010) 17411757. Google Scholar
Dobson, M., Luskin, M. and Ortner, C., Stability, instability, and error of the force-based quasicontinuum approximation. Arch. Rational Mech. Anal. 197 (2010) 179202. Google Scholar
W. E and Ming, P., Analysis of the local quasicontinuum method, in Frontiers and prospects of contemporary applied mathematics. Ser. Contemp. Appl. Math. CAM 6 (2005) 1832. Google Scholar
W. E and Ming, P., Cauchy-Born rule and the stability of crystalline solids : static problems. Arch. Rational Mech. Anal. 183 (2007) 241297. Google Scholar
W. E, Lu, J. and Yang, J.Z., Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115. Google Scholar
Eidel, B. and Stukowski, A., A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57 (2009) 87108. Google Scholar
M. Finnis, Interatomic Forces in Condensed Matter. Oxford Series on Materials Modelling 1 (2003).
Fish, J., Nuggehally, M.A., Shephard, M.S., Picu, C.R., Badia, S., Parks, M.L., and Gunzburger, M., Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comput. Methods Appl. Mech. Eng. 196 (2007) 45484560. Google Scholar
Gunzburger, M. and Zhang, Y., A quadrature-rule type approximation to the quasi-continuum method. Multiscale Model. Simul. 8 (2009/2010) 571590. Google Scholar
Iyer, M. and Gavini, V., A field theoretical approach to the quasi-continuum method. J. Mech. Phys. Solids 59 (2011) 15061535. Google Scholar
Klein, P.A. and Zimmerman, J.A., Coupled atomistic-continuum simulations using arbitrary overlapping domains. J. Comput. Phys. 213 (2006) 86116. Google Scholar
Knap, J. and Ortiz, M., An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 18991923. Google Scholar
S. Kohlhoff and S. Schmauder, A new method for coupled elastic-atomistic modelling, in Atomistic Simulation of Materials : Beyond Pair Potentials, edited by V. Vitek and D.J. Srolovitz. Plenum Press, New York (1989) 411–418.
X.H. Li and M. Luskin, An analysis of the quasi-nonlocal quasicontinuum approximation of the embedded atom model. To appear in Int. J. Multiscale Comput. Eng., arXiv:1008.3628.
X.H. Li and M. Luskin, A generalized quasi-nonlocal atomistic-to-continuum coupling method with finite range interaction. To appear in IMA J. Numer. Anal., arXiv:1007.2336.
Lin, P., Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657675. Google Scholar
Lin, P., Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects. SIAM J. Numer. Anal. 45 (2007) 313332 (electronic). Google Scholar
J. Lu and P. Ming, Convergence of a force-based hybrid method for atomistic and continuum models in three dimension. arXiv:1102.2523.
Luskin, M. and Ortner, C., An analysis of node-based cluster summation rules in the quasicontinuum method. SIAM J. Numer. Anal. 47 (2009) 30703086. Google Scholar
Makridakis, C., Ortner, C. and Süli, E., A priori error analysis of two force-based atomistic/continuum models of a periodic chain. Numer. Math. 119 (2011) 83121. Google Scholar
C. Makridakis, C. Ortner and E. Süli, Stress-based atomistic/continuum coupling : a new variant of the quasicontinuum approximation. Int. J. Multiscale Comput. Eng. forthcoming.
Miller, R.E. and Tadmor, E.B., The quasicontinuum method : overview, applications and current directions. J. Computer-Aided Mater. Design 9 (2003) 203239. Google Scholar
R.E. Miller and E.B. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17 (2009).
Ming, P. and Yang, J.Z., Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale Model. Simul. 7 (2009) 18381875. Google Scholar
Ortiz, M., Phillips, R. and Tadmor, E.B., Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 15291563. Google Scholar
C. Ortner, Analysis of the Quasicontinuum Method. Ph.D. thesis, University of Oxford (2006).
Ortner, C., A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D. Math. Comp. 80 (2011) 12651285. Google Scholar
C. Ortner and A.V. Shapeev, Analysis of an energy-based atomistic/continuum coupling approximation of a vacancy in the 2d triangular lattice. To appear in Math. Comp., arXiv1104.0311.
Ortner, C. and Süli, E., Analysis of a quasicontinuum method in one dimension. ESAIM : M2AN 42 (2008) 5791. Google Scholar
Ortner, C. and Wang, H., A priori error estimates for energy-based quasicontinuum approximations of a periodic chain. Math. Models Methods Appl. Sci. 21 (2011) 24912521. Google Scholar
C. Ortner and L. Zhang, work in progress.
C. Ortner and L. Zhang, Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces : a 2d model problem. arXiv:1110.0168.
Parks, M.L., Bochev, P.B. and Lehoucq, R.B., Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model. Simul. 7 (2008) 362380. Google Scholar
D. Pettifor, Bonding and structure of molecules and solids. Oxford University Press (1995).
K. Polthier and E. Preuß, Identifying vector field singularities using a discrete Hodge decomposition, in Visualization and mathematics III, Math. Vis. Springer, Berlin (2003) 113–134.
Shapeev, A.V., Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. Multiscale Model. Simul. 9 (2011) 905932. Google Scholar
Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R. and Ortiz, M., An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611642. Google Scholar
Shilkrot, L.E., Miller, R.E. and Curtin, W.A., Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. 89 (2002) 025501. Google ScholarPubMed
Shimokawa, T., Mortensen, J.J., Schiotz, J. and Jacobsen, K.W., Matching conditions in the quasicontinuum method : removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys. Rev. B 69 (2004) 214104. Google Scholar
G. Strang and G. Fix, An Analysis of the Finite Element Method. Wellesley-Cambridge Press (2008).
B. Van Koten and M. Luskin, Development and analysis of blended quasicontinuum approximations. To appear in SIAM J. Numer. Anal., arXiv:1008.2138.
B. Van Koten, Z.H. Li, M. Luskin and C. Ortner, A computational and theoretical investigation of the accuracy of quasicontinuum methods, in Numerical Analysis of Multiscale Problems, edited by I. Graham, T. Hou, O. Lakkis and R. Scheichl. Springer Lect. Notes Comput. Sci. Eng. 83 (2012).
Xiao, S.P. and Belytschko, T., A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193 (2004) 16451669. Google Scholar