Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T04:56:15.319Z Has data issue: false hasContentIssue false

Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model

Published online by Cambridge University Press:  12 June 2009

Alessandro Turco
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2, 34014 Trieste, Italy. desimone@sissa.it
François Alouges
Affiliation:
Université Paris XI, 91405 Orsay Cedex, France.
Antonio DeSimone
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2, 34014 Trieste, Italy. desimone@sissa.it
Get access

Abstract

We present a phase field approach to wetting problems, related tothe minimization of capillary energy. We discuss in detail boththe Γ-convergence results on which our numerical algorithmare based, and numerical implementation. Two possible choices ofboundary conditions, needed to recover Young's law for the contactangle, are presented. We also consider an extension of theclassical theory of capillarity, in which the introduction of adissipation mechanism can explain and predict the hysteresis ofthe contact angle. We illustrate the performance of the model byreproducing numerically a broad spectrum of experimental results:advancing and receding drops, drops on inclined planes andsuperhydrophobic surfaces.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G. and De Simone, A., Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 461 (2005) 7997. CrossRef
G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. In preparation (2009).
Alberti, G., Bouchitté, G. and Seppecher, P., Phase transition with line-tension effect. Arch. Rat. Mech. Anal. 144 (1998) 146. CrossRef
Baldo, S. and Bellettini, G., Γ-convergence and numerical analysis: an application to the minimal partition problem. Ricerche di Matematica 1 (1991) 3364.
Bao, W. and Du, Computing, Q. the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comp. 25 (2004) 1674. CrossRef
A. Braides, Γ-convergence for beginners. Oxford University Press (2002).
Callies, M. and Quéré, D., On water repellency. Soft Matter 1 (2005) 5561. CrossRef
G. Dal Maso, An introduction to Γ-convergence. Birkhaüser (1993).
P.-G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena. Springer (2004).
DeSimone, A., Grunewald, N. and Otto, F., A new model for contact angle hysteresis. Networks and Heterogeneous Media 2 (2007) 211225 CrossRef
R. Finn, Equilibrium Capillary Surfaces. Springer (1986).
Lafuma, A. and Quéré, D., Superhydrophobic states. Nature Materials 2 (2003) 457460. CrossRef
Modica, L., Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1987) 497.
Modica, L. and Mortola, S., Un esempio di Γ-convergenza. Boll. Un. Mat. It. B 14 (1977) 285299.
Patankar, N.A., On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19 (2003) 12491253. CrossRef
Polak, S.J., An increased accuracy scheme for diffusion equations in cylindrical coordinates. J. Inst. Math. Appl. 14 (1974) 197201. CrossRef
Seppecher, P., Moving contact lines in the Cahn-Hilliard theory. Int. J. Engng. Sci. 34 (1996) 977992. CrossRef
J.C. Strikwerda, Finite Difference Schemes and PDE. SIAM (2004).