Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:28:58.726Z Has data issue: false hasContentIssue false

Means in complete manifolds: uniqueness and approximation

Published online by Cambridge University Press:  27 March 2014

Marc Arnaudon
Affiliation:
Laboratoire de Mathématiques et Applications, CNRS: UMR 7348, Université de Poitiers, Téléport 2 – BP 30179, 86962 Futuroscope Chasseneuil Cedex, France. marc.arnaudon@math.univ-poitiers.fr
Laurent Miclo
Affiliation:
Institut de Mathématique de Toulouse, CNRS: UMR 5219, 118, route de Narbonne, 31062 Toulouse Cedex 9, France; laurent.miclo@math.univ-toulouse.fr
Get access

Abstract

Let M be acomplete Riemannian manifold, M ∈ ℕ andp ≥ 1. Weprove that almost everywhere on x = (x1,...,xN) ∈ MNfor Lebesgue measure in MN, the measure \hbox{$\di \mu(x)=\f1N\sum_{k=1}^N\d_{x_k}$}μ(x)=1N∑k=1Nδxk has a unique p–mean ep(x).As a consequence, if X = (X1,...,XN)is a MN-valued randomvariable with absolutely continuous law, then almost surely μ(X(ω)) has aunique p–mean. In particular if (Xn)n ≥ 1is an independent sample of an absolutely continuous law in M, then the processep,n(ω) = ep(X1(ω),...,Xn(ω))is well-defined. Assume M is compact and consider a probability measureν inM. Usingpartial simulated annealing, we define a continuous semimartingale which converges inprobability to the set of minimizers of the integral of distance at power p with respect toν. When theset is a singleton, it converges to the p–mean.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Afsari, Riemannian L p center of mass: existence, uniqueness, and convexity. Proc. Amer. Math. Soc. S 0002–9939 (2010) 10541-5. (electronic)
B. Afsari, R. Tron and R. Vidal, On the convergence of gradient descent for finding the Riemannian center of mass. arXiv:1201.0925.
Arnaudon, M. and Nielsen, F., Medians and means in Finsler geometry. LMS J. Comput. Math. 15 (2012) 2337. Google Scholar
Arnaudon, M., Dombry, C., Phan, A. and Yang, L., Stochastic algorithms for computing means of probability measures Stoch. Proc. Appl. 122 (2012) 14371455. Google Scholar
Arnaudon, M. and Nielsen, F., On computing the Riemannian 1-Center. Comput. Geom. 46 (2013) 93104. Google Scholar
M. Bădoiu and K.L. Clarkson, Smaller core-sets for balls, Proc. of the fourteenth Annual ACM-SIAM Symposium on Discrete algorithms. Soc. Industrial Appl. Math. Philadelphia, PA, USA (2003) 801–802.
Bhattacharya, R. and Patrangenaru, V., Large sample theory of intrinsic and extrinsic sample means on manifolds (i). Ann. Statis. 31 (2003) 129. Google Scholar
S. Bonnabel, Convergence des méthodes de gradient stochastique sur les variétés riemanniennes. In GRETSI, Bordeaux (2011).
H. Cardot, P. Cénac and P.-A. Zitt, Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm, Bernoulli.
B. Charlier, Necessary and sufficient condition for the existence of a Fréchet mean on the circle. arXiv:1109.1986.
Fletcher, P.T., Venkatasubramanian, S. and Joshi, S., The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage 45 (2009) S143S152. Google ScholarPubMed
Groisser, D., Newton’s method, zeroes of vector fields, and the Riemannian center of mass. Adv. Appl. Math. 33 (2004) 95135. Google Scholar
Groisser, D., On the convergence of some Procrustean averaging algorithms. Stochastics 77 (2005) 3160. Google Scholar
Hsu, E.P., Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Amer. Math. Soc. 127 (1999) 37393744. Google Scholar
Holley, R., Kusuoka, S. and Stroock, D., Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83 (1989) 333347. Google Scholar
Holley, R. and Stroock, D., Annealing via Sobolev inequalities. Commun. Math. Phys. 115 (1988) 553569. Google Scholar
T. Hotz and S. Huckemann, Intrinsic mean on the circle: Uniqueness, Locus and Asymptotics. arXiv:org1108:2141.
Kendall, W.S., Probability, convexity and harmonic maps with small image I: uniqueness and fine existence. Proc. London Math. Soc. 61 (1990) 371406. Google Scholar
Le, H., Estimation of Riemannian barycentres. LMS J. Comput. Math. 7 (2004) 193200. Google Scholar
Miclo, L., Recuit simulé sans potentiel sur une variété compacte. Stoch. and Stochastic Reports 41 (1992) 2356. Google Scholar
Miclo, L., Recuit simulé partiel, Stoch. Process. Appl. 65 (1996) 281298. Google Scholar
Sheu, S.J., Some estimates of the transition density function of a nondegenerate diffusion Markov process. Ann. Probab. 19 (1991) 538561. Google Scholar
Sturm, K.T., Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002). Contemp. Math. Amer. Math. Soc. 338 (2003) 357390. Google Scholar
Weiszfeld, E., Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. J. 43 (1937) 355386. Google Scholar
Yang, L., Riemannian median and its estimation. LMS J. Comput. Math. 13 (2010) 461479. Google Scholar
L.Yang, Some properties of Frechet medians in Riemannian manifolds. Preprint.