Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T19:27:25.190Z Has data issue: false hasContentIssue false

Approximation of Reliability for a large systemwith non-markovianrepair-times

Published online by Cambridge University Press:  15 August 2002

Jean-Louis Bon
Affiliation:
Laboratoire de Modélisation Stochastique et Statistique, bâtiment 425, Université Paris-Sud, 91405 Orsay Cedex, France.
Jean Bretagnolle
Affiliation:
Laboratoire de Modélisation Stochastique et Statistique, bâtiment 425, Université Paris-Sud, 91405 Orsay Cedex, France.
Get access

Abstract

Consider a system of many components with constant failure rate andgeneral repair rate. When all components are reliable and easily reparable,the reliability of the system can be evaluated from the probability q offailure before restoration. In [14], authors give an asymptoticapproximation by monotone sequences. In the same framework, we propose,here, a bounding for q and apply it in the ageing property case.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing. Holt, Rhineart and Winston, New York (1975).
J.-L. Bon, Méthodes Mathématiques de Fiabilité, Éditions Masson, Paris (1995).
J.-L. Bon and E. Paltanea, Encadrement de la fiabilité d'un système markovien à partir des caractéristiques de ses composants, Actes des XXIXes Journées de Statistique, ASU (1997).
K. Chen and Z. He, Reliability bounds for NBUE and NWUE distributions. Acta Mat. Appli. Sinica 4 (1989).
D.R. Cox, Renewal Theory, J. Wiley (1967).
Gertsbakh, I.B., Asymptotic methods in reliability theory: A review. Adv. in Appl. Prob. 16 (1984) 147-175. CrossRef
D.B. Gnedenko and A.D. Solovyev, Estimation de la fiabilité des systèmes réparables complexes. Teknicheskaia Kibernetika 3 (1975) 121-128 (en russe).
V.V. Kalashnikov, Geometric sums: Bounds for rare events with applications, Kluwer academic Publishers (1997).
G.P. Klimov, Stokastiskie systemi obslujivanie, Nauka (in Russian) (1966).
J. Keilson, Stochastic models in reliability theory, in Teoria dell affidabilita, Proc. Int. School Enrico Fermi, North-Holland (1984).
I.N. Kovalenko, N.Yu. Kuznetsov and P.A. Pegg, Mathematical Theory of Reliability of Time dependent Systems with Practical Applications, J. Wiley (1997).
P. Pamphile, Calcul de fiabilité de grands systèmes hautement fiables. Thèse université Paris-Sud (Orsay), Paris (1994).
A.D. Solovyev, Voprosi Matematicheskoi Teorii Nadejnosti, Gnedenko B.V., Ed., Radio i Sviaz, Moscow (1983) (in Russian).
Solovyev, A.D. and Konstant, D.G., Reliability estimation of a complex renewable system with an unbounded number of repair units. J. Appl. Probab. 28 (1991) 833-842. CrossRef