Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T06:15:36.906Z Has data issue: false hasContentIssue false

Brownian particles with electrostatic repulsionon the circle: Dyson's model for unitary random matrices revisited

Published online by Cambridge University Press:  15 August 2002

Emmanuel Cépa
Affiliation:
MAPMO, UMR 6628, bâtiment de Mathématiques, Université d'Orléans, BP. 6759, 45067 Orléans Cedex 2, France; cepa@labomath.univ-orleans.fr. and
Dominique Lépingle
Affiliation:
MAPMO, UMR 6628, bâtiment de Mathématiques, Université d'Orléans, BP. 6759, 45067 Orléans Cedex 2, France; cepa@labomath.univ-orleans.fr. and
Get access

Abstract

The Brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random matrices N x N is interpreted as a system of N interacting Brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, we study the behaviour of this system when the number of particles N goes to infinity (through the empirical measure process). We prove that a limiting measure-valued process exists and is the unique solution of a deterministic second-order PDE. The uniform law on [-π;π] is the only limiting distribution of µt when t goes to infinity and µt has an analytical density.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonami, A., Bouchut, F., Cépa, E. and Lépingle, D., A nonlinear SDE involving Hilbert transform. J. Funct. Anal. 165 (1999) 390-406. CrossRef
E. Cépa, Équations différentielles stochastiques multivoques. Sémin. Probab. XXIX (1995) 86-107.
Cépa, E., Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500-532. CrossRef
Cépa, E. and Lépingle, D., Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 (1997) 429-449.
Chan, T., The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Related Fields 93 (1992) 249-272. CrossRef
Duplantier, B., Lawler, G.F., Le Gall, J.F. and Lyons, T.J., The geometry of Brownian curve. Bull. Sci. Math. 2 (1993) 91-106.
F.J. Dyson, A Brownian motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198.
Feller, W., Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. CrossRef
Grabiner, D.J., Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré 35 (1999) 177-204. CrossRef
Hobson, D. and Werner, W., Non-colliding Brownian motion on the circle. Bull. London Math. Soc. 28 (1996) 643-650. CrossRef
I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus. Springer, Berlin Heidelberg New York (1988).
Lions, P.L. and Sznitman, A.S., Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. CrossRef
H.P. McKean, Stochastic integrals. Academic Press, New York (1969).
M.L. Mehta, Random matrices. Academic Press, New York (1991).
M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites. Sémin. Probab. XX (1986) 426-446.
Nagasawa, M. and Tanaka, H., A diffusion process in a singular mean-drift field. Z. Wahrsch. Verw. Gebiete 68 (1985) 247-269. CrossRef
Pinsky, R.G., On the convergence of diffusion processes conditioned to remain in a bounded region for large times to limiting positive recurrent diffusion processes. Ann. Probab. 13 (1985) 363-378. CrossRef
D. Revuz and M. Yor, Continuous martingales and Brownian motion. Springer Verlag, Berlin Heidelberg (1991).
Rogers, L.C.G. and Shi, Z., Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 (1993) 555-570. CrossRef
L.C.G. Rogers and D. Williams, Diffusions, Markov processes and Martingales. Wiley and Sons, New York (1987).
Saisho, Y., Stochastic differential equations for multidimensional domains with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. CrossRef
H.Spohn, Dyson's model of interacting Brownian motions at arbitrary coupling strength. Markov Process. Related Fields 4 (1998) 649-661.
A.S. Sznitman, Topics in propagation of chaos. École d'été Probab. Saint-Flour XIX (1991) 167-251.
Tanaka, H., Stochastic differential equations with reflecting boundary conditions in convex regions. Hiroshima Math. J. 9 (1979) 163-177.
D. Voiculescu, Lectures on free probability theory. École d'été Probab. Saint-Flour (1998).