Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:10:02.093Z Has data issue: false hasContentIssue false

Convergence to infinitely divisible distributions with finite variance for someweakly dependent sequences

Published online by Cambridge University Press:  15 November 2005

Jérôme Dedecker
Affiliation:
Laboratoire de Statistique Théorique et Appliquée, Université Paris 6, Site Chevaleret, 13 rue Clisson, 75013 Paris, France; dedecker@ccr.jussieu.fr
Sana Louhichi
Affiliation:
Laboratoire de Probabilités, Statistique et modélisation, Université de Paris-Sud, Bât. 425, 91405 Orsay Cedex, France; Sana.Louhichi@math.u-psud.fr
Get access

Abstract

We continue the investigation started in a previous paper, onweak convergence to infinitely divisible distributions with finitevariance. In the present paper, we study this problem for someweakly dependent random variables, including in particularassociated sequences. We obtain minimal conditions expressed interms of individual random variables. As in the i.i.d. case, wedescribe the convergence to the Gaussian and the purelynon-Gaussian parts of the infinitely divisible limit. We alsodiscuss the rate of Poisson convergence and emphasize the specialcase of Bernoulli random variables. The proofs aremainly based on Lindeberg's method.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Araujo and E. Giné, The central limit theorem for real and Banach space valued random variables. Wiley, New York (1980).
A.D. Barbour, L. Holst and S. Janson, Poisson approximation. Clarendon Press, Oxford (1992).
R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life: Probability Models. Silver Spring, MD (1981).
T. Birkel, On the convergence rate in the central limit theorem for associated processes. Ann. Probab. 16 (1988) 1685–1698.
A.V. Bulinski, On the convergence rates in the CLT for positively and negatively dependent random fields, in Probability Theory and Mathematical Statistics, I.A. Ibragimov and A. Yu. Zaitsev Eds. Gordon and Breach Publishers, Singapore, (1996) 3–14.
Chen, L.H.Y., Poisson approximation for dependent trials. Ann. Probab. 3 (1975) 534545. CrossRef
Cox, J.T. and Grimmett, G., Central limit theorems for associated random variables and the percolation models. Ann. Probab. 12 (1984) 514528. CrossRef
J. Dedecker and S. Louhichi, Conditional convergence to infinitely divisible distributions with finite variance. Stochastic Proc. Appl. (To appear.)
Doukhan, P. and Louhichi, S., A new weak dependence condition and applications to moment inequalities. Stochastic Proc. Appl. 84 (1999) 313342. CrossRef
Esary, J., Proschan, F. and Walkup, D., Association of random variables with applications. Ann. Math. Statist. 38 (1967) 14661476. CrossRef
Fortuin, C., Kastelyn, P. and Ginibre, J., Correlation inequalities on some ordered sets. Comm. Math. Phys. 22 (1971) 89103. CrossRef
B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables. Addison-Wesley Publishing Company (1954).
Holst, L. and Janson, S., Poisson approximation using the Stein-Chen method and coupling: number of exceedances of Gaussian random variables. Ann. Probab. 18 (1990) 713723. CrossRef
Hsing, T., Hüsler, J. and Leadbetter, M.R., On the Exceedance Point Process for a Stationary Sequence. Probab. Theory Related Fields 78 (1988) 97112. CrossRef
Hudson, W.N., Tucker, H.G. and Veeh, J.A, Limit distributions of sums of m-dependent Bernoulli random variables. Probab. Theory Related Fields 82 (1989) 917. CrossRef
Jakubowski, A., Minimal conditions in p-stable limit theorems. Stochastic Proc. Appl. 44 (1993) 291327. CrossRef
Jakubowski, A., Minimal conditions in p-stable limit theorems -II. Stochastic Proc. Appl. 68 (1997) 120. CrossRef
Joag-Dev, K. and Proschan, F., Negative association of random variables, with applications. Ann. Statist. 11 (1982) 286295. CrossRef
O. Kallenberg, Random Measures. Akademie-Verlag, Berlin (1975).
M. Kobus, Generalized Poisson Distributions as Limits of Sums for Arrays of Dependent Random Vectors. J. Multi. Analysis (1995) 199–244.
M.R Leadbetter, G. Lindgren and H. Rootzén, Extremes and related properties of random sequences and processes. New York, Springer (1983).
C.M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in Inequalities in Statistics and Probability, Y.L. Tong Ed. IMS Lecture Notes-Monograph Series 5 (1984) 127–140.
Newman, C.M., Rinott, Y. and Tversky, A., Nearest neighbors and voronoi regions in certain point processes. Adv. Appl. Prob. 15 (1983) 726751. CrossRef
Newman, C.M. and Wright, A.L., An invariance principle for certain dependent sequences. Ann. Probab. 9 (1981) 671675. CrossRef
V.V. Petrov, Limit theorems of probability theory: sequences of independent random variables. Clarendon Press, Oxford (1995).
Pitt, L., Positively Correlated Normal Variables are Associated. Ann. Probab. 10 (1982) 496499. CrossRef
E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Collection Mathématiques & Applications. Springer, Berlin 31 (2000).
K.I. Sato, Lévy processes and infinitely divisible distributions. Cambridge studies in advanced mathematics 68 (1999).
C.M. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, in Proc. Sixth Berkeley Symp. Math. Statist. Probab. Univ. California Press 3 (1971) 583–602.