Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T12:44:44.900Z Has data issue: false hasContentIssue false

Model selection for estimating the non zero components of aGaussian vector

Published online by Cambridge University Press:  09 March 2006

Sylvie Huet*
Affiliation:
INRA, MIA, 78352 Jouy-en-Josas Cedex, France; huet@banian.jouy.inra.fr
Get access

Abstract

We propose a method based on a penalised likelihood criterion, forestimating the number on non-zero components of the meanof a Gaussian vector. Following the work of Birgé and Massart in Gaussian modelselection, we choose the penalty function such that the resultingestimator minimises the Kullback risk.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

F. Abramovich, Y. Benjamini, D. Donoho and I. Johnston, Adapting to unknown sparsity by controlloing the false discovery rate. Technical Report 2000-19, Department of Statistics, Stanford University (2000).
H. Akaike, Information theory and an extension of the maximum likelihood principle, in 2nd International Symposium on Information Theory, B.N. Petrov and F. Csaki Eds., Budapest Akademia Kiado (1973) 267–281.
Akaike, H., A bayesian analysis of the minimum aic procedure. Ann. Inst. Statist. Math. 30 (1978) 914. CrossRef
Antoniadis, A., Gijbels, I. and Grégoire, G., Model selection using wavelet decomposition and applications. Biometrika 84 (1997) 751763. CrossRef
Baraud, Y., Huet, S. and Laurent, B., Adaptive tests of qualitative hypotheses. ESAIM: PS 7 (2003) 147159. CrossRef
Barron, A., Birgé, L. and Massart, P., Risk bounds for model selection via penalization. Probab. Theory Rel. Fields 113 (1999) 301413. CrossRef
Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57 (1995) 289300.
Birgé, L. and Massart, P., Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 (2001) 203268.
L. Birgé and P. Massart, A generalized cp criterion for gaussian model selection. Technical report, Univ. Paris 6, Paris 7, Paris (2001).
Cirel'son, B.S., Ibragimov, I.A. and Sudakov, V.N., Norm of gaussian sample function, in Proceedings of the 3rd Japan-URSS. Symposium on Probability Theory, Berlin, Springer-Verlag. Springer Lect. Notes Math. 550 (1976) 2041. CrossRef
H.A. David, Order Statistics. Wiley series in Probability and mathematical Statistics. John Wiley and Sons, NY (1981).
Box, E.P. and Meyer, R.D., An analysis for unreplicated fractional factorials. Technometrics 28 (1986) 1118. CrossRef
D.P. Foster and R.A. Stine, Adaptive variable selection competes with bayes expert. Technical report, The Wharton School of the University of Pennsylvania, Philadelphia (2002).
S. Huet, Comparison of methods for estimating the non zero components of a gaussian vector. Technical report, INRA, MIA-Jouy, www.inra.fr/miaj/apps/cgi-bin/raptech.cgi (2005).
Hurvich, M.C. and Tsai, C.L., Regression and time series model selection in small samples. Biometrika 76 (1989) 297307. CrossRef
I. Johnston and B. Silverman, Empirical bayes selection of wavelet thresholds. Available from www.stats.ox.ac.uk/ silverma/papers.html (2003).
Laurent, B. and Massart, P., Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 (2000) 13021338.
Nishii, R., Maximum likelihood principle and model selection when the true model is unspecified. J. Multivariate Anal. 27 (1988) 392403. CrossRef
Haaland, P.D. and O'Connell, M.A., Inference for effect-saturated fractional factorials. Technometrics 37 (1995) 8293. CrossRef
Rissanen, J., Universal coding, information, prediction and estimation. IEEE Trans. Infor. Theory 30 (1984) 629636. CrossRef
R.V. Lenth, Quick and easy analysis of unreplicated factorials. Technometrics 31(4) (1989) 469–473.
Schwarz, G., Estimating the dimension of a model. Ann. Statist. 6 (1978) 461464. CrossRef