Published online by Cambridge University Press: 29 October 2010
We study sample-based estimates of the expectation of the functionproduced by the empirical minimization algorithm. We investigate theextent to which one can estimate the rate of convergence of theempirical minimizer in a data dependent manner. We establish threemain results. First, we provide an algorithm that upper bounds theexpectation of the empirical minimizer in a completelydata-dependent manner. This bound is based on a structural resultdue to Bartlett and Mendelson, which relates expectations to sampleaverages. Second, we show that these structural upper bounds can beloose, compared to previous bounds. In particular, we demonstrate aclass for which the expectation of the empirical minimizer decreasesas O(1/n) for sample size n, although the upper bound based onstructural properties is Ω(1). Third, we show that thislooseness of the bound is inevitable: we present an example thatshows that a sharp bound cannot be universally recovered fromempirical data.
This work was supported in part by National Science Foundation Grant 0434383.
This work was supported in part by the Australian Research Council Discovery Grant DP0559465.