Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:40:26.322Z Has data issue: false hasContentIssue false

Optimal heat kernel bounds under logarithmic Sobolev inequalities

Published online by Cambridge University Press:  15 August 2002

Dominique Bakry
Affiliation:
Département de Mathématiques, Laboratoire de Statistique et Probabilités associé au C.N.R.S., Université Paul Sabatier, 31062 Toulouse, France. Email : bakry@cict.fr, ledoux@cict.fr
Daniel Concordet
Affiliation:
Unité de Biométrie, Ecole Vétérinaire de Toulouse, 31067 Toulouse, France et Département de Mathématiques, Laboratoire de Statistique et Probabilités associé au C.N.R.S., Université Paul Sabatier, 31062 Toulouse, France. Email : concorde@cict.fr
Michel Ledoux
Affiliation:
Département de Mathématiques, Laboratoire de Statistique et Probabilités associé au C.N.R.S., Université Paul Sabatier, 31062 Toulouse, France. Email : bakry@cict.fr, ledoux@cict.fr
Get access

Abstract

We establish optimal uniform upper estimates on heat kernels whose generators satisfy a logarithmic Sobolev inequality (or entropy-energy inequality) with the optimal constant of the Euclidean space. Off-diagonals estimates may also be obtained with however a smaller distance involving harmonic functions. In the last part, we apply these methods to study some heat kernel decays for diffusion operators of the type Laplacian minus the gradient of a smooth potential with a given growth at infinity.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)