Hostname: page-component-6bf8c574d5-mggfc Total loading time: 0 Render date: 2025-02-23T03:43:04.739Z Has data issue: false hasContentIssue false

Cooling-Induced Structures in Collapsar AccretionDisks

Published online by Cambridge University Press:  22 July 2013

A. Batta
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264, Ciudad Universitaria, D.F., México. e-mail: abatta@astro.unam.mx; wlee@astro.unam.mx ;
W.H. Lee
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264, Ciudad Universitaria, D.F., México. e-mail: abatta@astro.unam.mx; wlee@astro.unam.mx ;
Get access

Abstract

The collapse of massive rotating stellar cores and the associated accretion is thought topower long Gamma ray bursts. The physical conditions make neutrino emission the maincooling agent in the flow. We have carried out an initial set of calculations of thecollapse of rotating polytropic cores in three dimensions, making use of apseudo-relativistic potential and a simplified cooling prescription. We focus on theeffects of self gravity and cooling on the overall morphology and evolution of the flowfor a given rotation rate in the context of the collapsar model. For the typical coolingtimes expected in such a scenario we observe the appearance of strong instabilities on atime scale tcool following disk formation.Such instabilities and their gravitational interaction with the black hole producesignificant variability in the obtained accretion rates, which would translate intoluminosity variations when a more realistic neutrino cooling and luminosity scheme isimplemented in future work.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

López-Cámara, D., Lee, W.H., & Ramirez-Ruiz, E., 2009, ApJ, 692, 804 CrossRef
MacFadyen, A.I., & Woosley, S.E., 1999, ApJ, 524, 262 CrossRef
Narayan, R., Piran, T., & Kumar, P., 2001, ApJ, 557, 949 CrossRef
Paczynski, B., & Wiita, P.J., 1980, A&A, 88, 23
Proga, D., MacFadyen, A.I., Armitage, P., & Begelman, M., 2003, ApJ, 599, L5 CrossRef
Rockefeller, G., Fryer, C.L., & Li, H., 2006 [arXiv:astro-ph/0608028]
Taylor, P.A., Miller, J.C., & Podsiadlowski, P., 2011, MNRAS, 410, 4, 2385 CrossRef
Woosley, S.E., 1993, ApJ, 405, 273 CrossRef
Woosley, S.E., & Bloom, J.S., 2006, ARA&A, 44
Springel, V., 2005, MNRAS, 364, 1105 CrossRef
Zurek, W.H., & Benz, W., 1986, ApJ, 308, 123 CrossRef