Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-22T17:23:19.111Z Has data issue: false hasContentIssue false

Temporal Decomposition Studies of GRBLightcurves

Published online by Cambridge University Press:  22 July 2013

N.P. Bhat*
Affiliation:
University of Alabama in Huntsville, 301 Sparkman Dr. Huntsville 35899, AL, USA
Get access

Abstract

Gamma-ray bursts (GRB) are extremely energetic events and produce highly diverse lightcurves. Light curves are believed to be resulting from internal shocks reflecting theactivities of the GRB central engine. Hence their temporal studies can potentially lead tothe understanding of the GRB central engine and its evolution. The light curve variabilitytime scale is an interesting parameter which most models attribute to a physical origine.g., central engine activity, clumpy circum-burst medium, orrelativistic turbulence. We develop a statistical method to estimate the GRB minimumvariability time scale (MVT) for long and short GRBs detected by GBM. We find that the MVTof short bursts is distinctly shorter than that for long GRBs supporting the possibilityof a more compact central engine of the former. We find that MVT estimated by this methodis consistent with the shortest rise time of the fitted pulses. Hence we use the fittedpulse rise times to study the evolution of burst variability time scale. Variability timeis in turn related to the minimum bulk Lorentz factor. Using this we relate the GRBspectral evolution to the evolution of the variability time scale.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, A.A., Ackerman, M., Ajello, M., et al., 2009, Nature, 462, 331 CrossRef
Ackerman, M., Asano, K., Atwood, W.B., et al., 2010, ApJ, 716, 1178 CrossRef
Aoi, J., Murase, K., Takahashi, K., Ioka, K., & Nagataki, S., 2010, ApJ, 722, 440 CrossRef
Bhat, P.N., Briggs, M.S., Connaughton, V., et al., 2012, ApJ, 744, 141 CrossRef
Granot, J., Cohen-Tanuji, J., & do Couto e Silva, E., 2008, ApJ, 677, 92 CrossRef
Hascoët, R., Daigne, F., Mochkovitch, R., et al., 2012, MNRAS, 421, 525
Kouveliotou, C., Meegan, C.A., Fishman, G.J., et al., 1993, ApJ, 413, L101 CrossRef
Lei, W.H., Wang, D.X., Gong, B.P., et al., 2007, A&A, 468, 563
Lithwick, Y., & Sari, R., 2001, ApJ, 555, 540 CrossRef
Lu, Y., Huang, Y.F., & Zhang, S.N., 2008, ApJ, 684, 1330 CrossRef
MacLachlan, G.A., Shenoy, A., Sonbas, E., et al., 2012, MNRAS, 425, L32 CrossRef
Norris, J.P., Bonnell, J.T., Kazanas, D., et al., 2005, ApJ, 627, 324 CrossRef
Razzaque, S., Mészáros, P., & Zhang, B., 2004, ApJ, 613, 1072 CrossRef
Rees, M.J., & Mészáros, P., 1994, ApJ, 430, L93 CrossRef
Sari, R., & Piran, T., 1997, ApJ, 485, 270 CrossRef