Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T03:53:19.590Z Has data issue: false hasContentIssue false

Cerebrospinal fluid dynamics: disturbances and diagnostics

Published online by Cambridge University Press:  01 February 2008

A. Lavinio*
Affiliation:
Addenbrooke’s Hospital, Academic Neurosurgery, Cambridge, UK
Z. Czosnyka
Affiliation:
Addenbrooke’s Hospital, Academic Neurosurgery, Cambridge, UK
M. Czosnyka
Affiliation:
Addenbrooke’s Hospital, Academic Neurosurgery, Cambridge, UK
*
Correspondence to: Andrea Lavinio, Academic Neurosurgery, Addenbrooke’s Hospital, Cambridge, UK. E-mail: andrea.lavinio@gmail.com; Tel: +44 1223 336946; Fax: +44 1223 216926
Get access

Summary

The pathophysiology of hydrocephalus can be modelled and described in terms of altered biomechanical parameters. Shunting is aimed to correct the patient’s cerebrospinal fluid dynamics, compensating for inadequate cerebrospinal fluid re-absorption or insufficient volume buffering reserve. Computerized infusion studies implement intracranial pressure and arterial pressure signal processing and model analysis to allow the estimation of cerebrospinal dynamics variables such as cerebrospinal fluid outflow resistance, brain compliance and pressure–volume index, estimated sagittal sinus pressure, cerebrospinal fluid formation rate, compensatory reserve and cerebral vasoreactivity.

Infusion studies can assist in the prognostication of normal pressure hydrocephalus and in the diagnosis of idiopathic intracranial hypertension. The technique is also helpful in the assessment of shunt malfunction, including posture-related over-drainage and shunt obstruction.

Type
Original Article
Copyright
Copyright © European Society of Anaesthesiology 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Katzman, R, Hussey, F. A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 1970; 20: 534544.CrossRefGoogle ScholarPubMed
2. Marmarou A. A theoretical model and experimental evaluation of the cerebrospinal fluid system. Thesis 1973, Drexel University, Philadelphia, PA.Google Scholar
3.Ekstedt, J. CSF hydrodynamic studies in man. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry 1977; 40: 105119.CrossRefGoogle ScholarPubMed
4.Marmarou, A, Shulman, K, Rosende, RM. A non-linear analysis of CSF system and intracranial pressure dynamics. J Neurosurg 1978; 48: 332344.CrossRefGoogle Scholar
5.Borgesen, SE, Gjerris, F. The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 1982; 105: 6586.CrossRefGoogle ScholarPubMed
6.Giulioni, M, Ursino, M. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study. Neurosurgery 1996; 39: 10051014.Google ScholarPubMed
7.Davson, H. Formation and drainage of the CSF in hydrocephalus. In: Shapiro, K, Marmarou, A, Portnoy, H, eds. Hydrocephalus. New York, USA: Raven Press, 1984: 112160.Google Scholar
8.Oshio, K, Watanabe, H, Song, Y, Verkman, AS, Manley, GT. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 2005; 19: 7678.CrossRefGoogle ScholarPubMed
9.Ekstedt, J. CSF hydrodynamic studies in man. Normal hydrodynamic variables related to CSF pressure and flow. J Neurolog Neurosurg Psychiatry 1978; 41: 345353.CrossRefGoogle ScholarPubMed
10.Pappenheimer, JR, Heisey, SR, Jordan, EF, Downer, JC. Perfusion of the cerebral ventricular system in unanaesthetized goats. Am J Physiol 1962; 203: 763774.CrossRefGoogle Scholar
11.Albeck, MJ, Skak, C, Nielsen, PR, Olsen, KS, Borgesen, SE, Gjerris, F. Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg 1998; 89: 275278.CrossRefGoogle ScholarPubMed
12.Wagshul, ME, Chen, JJ, Egnor, MR, McCormack, EJ, Roche, PE. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 2006; 104: 810819.CrossRefGoogle ScholarPubMed
13.Davson, H, Welch, K, Segal, MB. The Physiology and Pathophysiology of Cerebrospinal Fluid. New York USA: Churchill Livingstone Inc, 1987.Google Scholar
14.Albeck, MJ, Borgesen, SE, Gjerris, F, Schmidt, JF, Sorensen, PS. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg 1991; 74: 597600.CrossRefGoogle ScholarPubMed
15.Gjerris, F., Borgesen, S.E. Pathophysiology of CSF circulation. In: Crockard, A, Hayward, A, Hoff, JT, eds. Neurosurgery The Scientific Basis of Clinical Practice. Cambridge, MA: Blackwell, 1992: 146174.Google Scholar
16.Czosnyka, M, Czosnyka, Z, Momjian, S, Pickard, JD. Cerebrospinal fluid dynamics. Physiol Meas 2004; 25: R51R76.CrossRefGoogle ScholarPubMed
17.Chang, HS, Nakagawa, H. Hypothesis on the pathophysiology of syringomyelia based on simulation of cerebrospinal fluid dynamics. J Neurol Neurosurg Psychiatry 2003; 74: 344347.CrossRefGoogle ScholarPubMed
18.Czosnyka, M, Whitehouse, H, Smielewski, P, Simac, S, Pickard, JD. Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J Neurol Neurosurg Psychiatry 1996; 60: 549558.CrossRefGoogle ScholarPubMed
19.Drake, J, Chumas, P, Kestle, J et al. . Late rapid deterioration after endoscopic third ventriculostomy: additional cases and review of the literature. J Neurosurg 2006; 105: 118126.Google ScholarPubMed
20.Nishiyama, K, Mori, H, Tanaka, R. Changes in cerebrospinal fluid hydrodynamics following endoscopic third ventriculostomy for shunt-dependent noncommunicating hydrocephalus. J Neurosurg 2003; 98: 10271031.CrossRefGoogle ScholarPubMed
21.Smielewski, P, Czosnyka, M, Steiner, L, Belestri, M, Piechnik, S, Pickard, JD. ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl 2005; 95: 4349.CrossRefGoogle ScholarPubMed
22.Czosnyka, ZH, Czosnyka, M, Pickard, JD. Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory. Acta Neurochir Suppl 2002; 81: 2730.Google ScholarPubMed
23.Marmarou, A, Bergsneider, M, Relkin, N, Klinge, P, Black, PM. Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction. Neurosurgery 2005; 57: S1S3.CrossRefGoogle ScholarPubMed
24.Czosnyka, Z, Czosnyka, M, Richards, HK, Pickard, JD. Laboratory testing of hydrocephalus shunts – conclusion of the UK Shunt evaluation programme. Acta Neurochir (Wien) 2002; 144: 525538.CrossRefGoogle ScholarPubMed
25.Hakim, S, Adams, RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 1965; 2: 307327.CrossRefGoogle ScholarPubMed
26.Esmonde, T, Cooke, S. Shunting for normal pressure hydrocephalus (NPH). Cochrane Database Syst Rev 2002: CD003157.Google ScholarPubMed
27.Silverberg, GD, Mayo, M, Saul, T, Rubenstein, E, McGuire, D. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003; 2: 506511.CrossRefGoogle ScholarPubMed
28.Stein, SC, Burnett, MG, Sonnad, SS. Shunts in normal-pressure hydrocephalus: do we place too many or too few? J Neurosurg 2006; 105: 815822.CrossRefGoogle ScholarPubMed
29.Pickard, JD, Spiegelhalter, D, Czosnyka, M. Health economics and the search for shunt-responsive symptomatic hydrocephalus in the elderly. J Neurosurg 2006; 105: 811814.CrossRefGoogle ScholarPubMed
30.Boon, AJ, Tans, JT, Delwel, EJ et al. . Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 1997; 87: 687693.CrossRefGoogle ScholarPubMed
31.Tans, JT, Boon, AJ, Dutch NPH Study Group. How to select patients with normal pressure hydrocephalus for shunting. Acta Neurochir Suppl 2002; 81: 35.Google ScholarPubMed