Summary
Background and objective: Propofol is a phenol derivative (2,6 di-isopropylphenol) with a unique effect profile including activating effects on GABAA and blocking effects on voltage-operated sodium channels. If the substituents in the 2- and the 6-positions are replaced by tert-butyl groups, the resulting phenol derivative, 2,6 di-tert-butylphenol, despite being a close structural propofol analogue, completely lacks GABAA receptor effects. The aim of this in vitro study was to investigate the effects of 2,6 di-tert-butylphenol on voltage-operated neuronal sodium channels in order to determine whether and, if so, how these structural changes alter the sodium channel-blocking effect seen with propofol.
Methods: Whole-cell sodium inward currents through heterologously expressed rat type IIA sodium channels were recorded in the absence and presence of definite concentrations of 2,6 di-tert-butylphenol and propofol.
Results: When applied at concentrations ≥30 μmol, 2,6 di-tert-butylphenol completely and irreversibly blocked sodium inward currents. The blockade equilibrium time was about 2 min. A partial washout was possible only if the application was stopped before the equilibrium of the blockade was achieved.
Conclusions: 2,6 Di-tert-butylphenol exerts a high-affinity block of neuronal sodium channels. Apparently, the slight structural differences of 2,6 di-tert-butylphenol in comparison with propofol – which account for the lack of GABAA receptor effects – enhance its voltage-operated sodium channel-blocking effects. As 2,6 di-tert-butylphenol is much more potent than most sodium channel blockers in clinical use, it might be of interest in the development of local anaesthetics.