Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T16:21:35.979Z Has data issue: false hasContentIssue false

Approximate ordinary differential equations for the optimal exercise boundaries of American put and call options

Published online by Cambridge University Press:  15 August 2013

MARIANITO R. RODRIGO*
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales, Australia email: marianito_rodrigo@uow.edu.au

Abstract

We revisit the American put and call option valuation problems. We derive analytical formulas for the option prices and approximate ordinary differential equations for the optimal exercise boundaries. Numerical simulations yield accurate option prices and comparable computational speeds when benchmarked against the binomial method for calculating option prices. Our approach is based on the Mellin transform and an adaptation of the Kármán–Pohlausen technique for boundary layers in fluid mechanics.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barone-Adesi, G. & Whaley, R. (1987) Efficient analytic approximation of American option values. J. Fin. 17, 91111.Google Scholar
[2]Brennan, M. & Schwartz, E. (1977) The valuation of American put options. J. Fin. 32, 449462.Google Scholar
[3]Brennan, M. & Schwartz, E. (1978) Finite difference methods and jump processes arising in the pricing of contingent claims: A synthesis. J. Financ. Quant. Anal. 13, 461474.Google Scholar
[4]Carr, P., Jarrow, R. & Myneni, R. (1992) Alternative characterizations of American put options. Math. Fin. 2, 87106.Google Scholar
[5]Chiarella, C. & Ziogas, A. (2006) A Fourier transform analysis of the American call option on assets driven by jump-diffusion processes. URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1106029. Accessed on 3 August 2013.Google Scholar
[6]Chiarella, C. & Ziogas, A. (2009) American call options under jump-diffusion processes – a Fourier transform approach. Appl. Math. Fin. 16, 3779.Google Scholar
[7]Company, R., González, A. L. & Jódar, L. (2006) Numerical solution of modified Black–Scholes equation pricing stock options with discrete dividend. Math. Comput. Modelling 44, 10581068.Google Scholar
[8]Company, R., Jódar, L., Rubio, G. & Villanueva, R. J. (2007) Explicit solution of Black–Scholes option pricing mathematical models with an impulsive payoff function. Math. Comput. Modelling 45, 8092.CrossRefGoogle Scholar
[9]Cox, J., Ross, S. & Rubinstein, M. (1979) Option pricing: A simplified approach. J. Financ. Econ. 7, 229263.Google Scholar
[10]Detemple, J. (2005) American-Style Derivatives: Valuation and Computation, CRC Financial Mathematical Series, Chapman and Hall, New York, NY.Google Scholar
[11]Dewynne, J., Howison, S., Rupf, I. & Wilmott, P. (1993) Some mathematical results in the pricing of American options. Eur. J. Appl. Math. 4, 381398.Google Scholar
[12]Geske, R. & Johnson, H. (1984) The American put options valued analytically. J. Fin. 39, 15111524.Google Scholar
[13]Huang, J., Subrahmanyam, M. & Yu, G. (1996) Pricing and hedging American options: A recursive integration method. Rev. Financ. Stud. 9, 277330.CrossRefGoogle Scholar
[14]Jacka, S. (1991) Optimal stopping and the American put. Math. Fin. 1, 114.Google Scholar
[15]Jódar, L., Sevilla-Perris, J., Cortés, J. C. & Sala, R. (2005) A new direct method for solving the Black–Scholes equation. Appl. Math. Lett. 18, 2932.Google Scholar
[16]Ju, N. (1998) Pricing an American option by approximating its early exercise boundary as a multipiece exponential function. Rev. Financ. Stud. 11, 627646.Google Scholar
[17]Karatzas, I. (1988) On the pricing of American options. Appl. Math. Optim. 17, 3760.CrossRefGoogle Scholar
[18]Kim, I. (1990) The analytical valuation of American puts. Rev. Financ. Stud. 3, 547572.Google Scholar
[19]Kwok, Y. (1998) Mathematical Models of Financial Derivatives, Springer Finance, Singapore.Google Scholar
[20]Longstaff, F. & Schwartz, E. (2001) Valuing American options by simulation: A simple least-squares approach. Rev. Financ. Stud. 14, 113147.Google Scholar
[21]MacMillan, L. (1986) An analytical approximation for the American put price. Adv. Futures Options Res. 1, 119139.Google Scholar
[22]McKean, H. (1965) Appendix: A free boundary problem for the heat equation arising from a problem of mathematical economcs. Ind. Manage. Rev. 6, 3239.Google Scholar
[23]Myint-U, T. & Debnath, L. (1987) Partial Differential Equations for Scientists and Engineers, North Holland, Netherlands.Google Scholar
[24]Panini, R. & Srivastav, R. (2004) Option pricing with Mellin transforms. Math. Comput. Modelling 40, 4356.Google Scholar
[25]Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. (1992) Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK.Google Scholar
[26]Rodrigo, M. R. & Mamon, R. S. (2007) An application of Mellin transform techniques to a Black–Scholes equation problem. Anal. Appl. 5, 5166.Google Scholar
[27]Schwartz, E. (1977) The valuation of warrants: Implementing a new approach. J. Financ. Econ. 4, 7993.Google Scholar
[28]Sevcovic, D. (2001) Analysis of the free boundary for the pricing of an American call option. Eur. J. Appl. Math. 12, 2537.CrossRefGoogle Scholar
[29]Tilley, J. (1993) Valuing American options in a path simulation model. Transact. Soc. Actuaries 45, 83104.Google Scholar
[30]Zhu, S.-P. (2011) On various quantitative approaches for pricing American options. New Math. Nat. Comput. 7, 313332.Google Scholar
[31]Zwillinger, D. (1989) Handbook of Differential Equations, Academic Press, Philadelphia PA.Google Scholar