Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:32:16.245Z Has data issue: false hasContentIssue false

Approximate transmission conditions through a rough thin layer: The case of periodic roughness

Published online by Cambridge University Press:  23 November 2009

I. S. CIUPERCA
Affiliation:
Université de Lyon, Université Lyon 1, CNRS, UMR 5208, Institut Camille Jordan, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France email: Ciuperca@math.univ-lyon1.fr
M. JAI
Affiliation:
ICJ CNRS-UMR 5208, INSA de Lyon, 20 avenue A. Einstein, F-69621 Villeurbanne Cedex, France email: Mohammed.jai@insa-lyon.fr
C. POIGNARD
Affiliation:
INRIA Bordeaux-Sud-Ouest, Institut de Mathématiques de Bordeaux, CNRS UMR 5251 & Université de Bordeaux1, 351 cours de la Libération, F-33405 Talence Cedex, France email: clair.poignard@inria.fr

Abstract

We study the behaviour of the steady-state voltage potentials in a material composed of a two-dimensional object surrounded by a rough thin layer and embedded in an ambient medium. The roughness of the layer is supposed to be ϵ-periodic, ϵ being the magnitude of the mean thickness of the layer. For ϵ tending to zero, we determine approximate transmission conditions in order to replace the rough thin layer by these conditions on the boundary of the interior material. This paper extends the previous works (Poignard, 2009, Math. Meth. Appl. Sci., vol. 32, pp. 435–453; Poignard et al., 2008, IEEE Trans. Magnet., vol. 44, no. 6, pp. 1154–1157) of the third author, which deal with smooth thin layers.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abboud, T. & Ammari, H. (1996) Diffraction at a curved grating: TM and TE cases, homogenization. J. Math. Anal. Appl. 202 (3), 9951026.CrossRefGoogle Scholar
[2]Achdou, Y. & Pironneau, O. (1995) Domain decomposition and wall laws. C. R. Acad. Sci. Paris Sér. I Math. 320 (5), 541547.Google Scholar
[3]Allaire, G. & Amar, M. (1999) Boundary layer tails in periodic homogenization. ESAIM Control Optim. Calc. Var. 4, 209243.Google Scholar
[4]Basson, A. & Gérard-Varet, A. (2008) Wall laws for fluid flows at a boundary with random roughness. Comm. Pure Applied Math. 61 (7), 341387.Google Scholar
[5]Bonder, J. F., Orive, R. & Rossi, J. D. (2007) The best Sobolev trace constant in a domain with oscillating boundary. Nonlin. Anal. 67 (4), 11731180.CrossRefGoogle Scholar
[6]Ciuperca, I. S., Perrussel, R. & Poignard, C. (2009) Influence of a Rough Thin Layer on the Steady-state Potential, Research Report INRIA RR-6812 [online]. URL: http://hal.inria.fr/inria-00384198/fr/Google Scholar
[7]Geuzaine, C. & Remacle, J. F. (2003) Gmsh mesh generator [online]. URL: http://geuz.org/gmsh.Google Scholar
[8]Jäger, W., Mikelić, A. & Neuss, N. (2000) Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22 (6), 20062028.Google Scholar
[9]Li, Y. Y. & Vogelius, M. S. (2000) Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153 (2), 91151.Google Scholar
[10]Marchenko, V. A. & Khruslov, E. Y. (2006) Homogenization of Partial Differential Equations, trans. Goncharenko, M. & Shepelsky, D.. Progress in Mathematical Physics, Vol. 46, Birkhäuser, Boston, MA.Google Scholar
[11]Poignard, C. (2009) Approximate transmission conditions through a weakly oscillating thin layer. Math. Meth. Appl. Sci. 32, 435453.CrossRefGoogle Scholar
[12]Poignard, C., Dular, P., Perrussel, R., Krähenbühl, L., Nicolas, L. & Schatzman, M. (2008) Approximate conditions replacing thin layer. IEEE Trans. Magnet. 44 (6), 11541157.Google Scholar
[13]Renard, Y. & Pommier, J. Getfem finite element library [online]. URL: http://home.gna.org/getfem.Google Scholar
[14]Saarenketo, T. (1998) Electrical properties of water in clay and silty soils. J. of Applied Geophysics 40, 7388.CrossRefGoogle Scholar
[15]Wildenschild, D., Roberts, J. J. & Carlberg, E. D. (July 1999) Electrical Properties of Sand–Clay Mixtures: The Effect of Microstructure, Technical Report Schlumberger, Houston, TX.Google Scholar