Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T15:01:47.515Z Has data issue: false hasContentIssue false

A continuum theory for one-dimensional self-similar elasticity and applications to wave propagation and diffusion

Published online by Cambridge University Press:  16 August 2012

THOMAS M. MICHELITSCH
Affiliation:
Université Pierre et Marie Curie, Paris 6, Institut Jean le Rond d'Alembert, CNRS UMR 7190, France email: michel@lmm.jussieu.fr, gerard.maugin@upmc.fr
GÉRARD A. MAUGIN
Affiliation:
Université Pierre et Marie Curie, Paris 6, Institut Jean le Rond d'Alembert, CNRS UMR 7190, France email: michel@lmm.jussieu.fr, gerard.maugin@upmc.fr
MUJIBUR RAHMAN
Affiliation:
General Electric Energy, Greenville, SC 29615, USA email: mujibur.rahman@gmail.com
SHAHRAM DEROGAR
Affiliation:
Department of Architecture, Yeditepe University, Istanbul, Turkey email: derogar2002@yahoo.com
ANDRZEJ F. NOWAKOWSKI
Affiliation:
Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, South Yorkshire, UK email: a.f.nowakowski@sheffield.ac.uk, f.nicolleau@sheffield.ac.uk
FRANCK C. G. A. NICOLLEAU
Affiliation:
Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, South Yorkshire, UK email: a.f.nowakowski@sheffield.ac.uk, f.nicolleau@sheffield.ac.uk

Abstract

We analyse some fundamental problems of linear elasticity in one-dimensional (1D) continua where the material points of the medium interact in a self-similar manner. This continuum with ‘self-similar’ elastic properties is obtained as the continuum limit of a linear chain with self-similar harmonic interactions (harmonic springs) which was introduced in [19] and (Michelitsch T.M. (2011) The self-similar field and its application to a diffusion problem. J. Phys. A Math. Theor.44, 465206). We deduce a continuous field approach where the self-similar elasticity is reflected by self-similar Laplacian-generating equations of motion which are spatially non-local convolutions with power-function kernels (fractional integrals). We obtain closed-form expressions for the static displacement Green's function due to a unit δ-force. In the dynamic framework we derive the solution of the Cauchy problem and the retarded Green's function. We deduce the distributions of a self-similar variant of diffusion problem with Lévi-stable distributions as solutions with infinite mean fluctuations. In both dynamic cases we obtain a hierarchy of solutions for the self-similar Poisson's equation, which we call ‘self-similar potentials’. These non-local singular potentials are in a sense self-similar analogues to Newtonian potentials and to the 1D Dirac's δ-function. The approach can be a point of departure for a theory of self-similar elasticity in 2D and 3D and for other field theories (e.g. in electrodynamics) of systems with scale invariant interactions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abramowitz, M. & Stegun, I. A. (editors) (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Chapter 6), Dover, New York.Google Scholar
[2]Atanackovic, T. M. & Stankovic, B. (2009), Generalized wave equation in nonlocal elasticity. Acta. Mech. 208, 110.Google Scholar
[3]Bondarenko, A. N. & Levin, V. A. (2005) Self-similar spectrum of fractal lattice. Proceedings of Science and Technology KORUS 2005, Novosibirsk, Russia.Google Scholar
[4]Borodich, F. M. (1997) Some fractal models for fracture. J. Mech. Phys. Sol. 46 (2), 239259.Google Scholar
[5]Carpinteri, A.Cornetti, P. & Sapora, A. (2011) A fractional calculus approach to non-local elasticity. Eur. Phys. J. Special Topics 193, 193204.Google Scholar
[6]Epstein, M. & Adeebb, S. M. (2007) The stiffness of self-similar fractals. Int. J. Solids Struct. 45, 32383254.Google Scholar
[7]Gel'fand, I. M. & Shilov, G. E. (1964) Generalized Functions, Vol. 1: Properties and Operations, Academic Press, New York.Google Scholar
[8]Jackson, J. D. (1998) Classical Electrodynamics, 3rd ed., John Wiley, New York, ISBN: 10-047130932X, 13-978-0471309321.Google Scholar
[9]Jumarie, J. (2008) From Self-similarity to fractional derivative of non-differentiable functions via Mittag–Leffler Function. Appl. Math. Sci. 2 (40), 19491962.Google Scholar
[10]Kigami, J. (1989) A harmonic calculus on the Sierpinski spaces. Japan J. Appl. Math. 8, 259290.Google Scholar
[11]Lévi, P. (1965) Processus Stochastiques et Mouvement Brownien (Jacques Gabay Editions), Gauthier-Villars, Paris, France.Google Scholar
[12]Li, X., Davison, M. & Essex, C. (2003) Fractional Differential Equations and Stable Distributions, Applied Probability Trust, University of Sheffield, UK.Google Scholar
[13]Majumdar, A. & Bushan, B. (1992) Elastic-plastic contact of bifractal surfaces. Wear 153, 5364.Google Scholar
[14]Mandelbrot, B. (1992) The Fractal Geometry of Nature, W. Freeman, Longton, UK, ISBN: 0-716-71186-9.Google Scholar
[15]Mandelbrot, B. (1995) Les Objets Fractals – Form Hasard et Dimension, Mandelbrot, Flammarion, Paris, France, ISBN: 978-2-0812-4617-1.Google Scholar
[16]Mandelbrot, B. (1997) Fractales, Hasard et Finance, Flammarion, Paris, France, pp. 106ff, 156, ISBN: 978-2-0812-2510-7.Google Scholar
[17]Michelitsch, T. M. (2011) The self-similar field and its application to a diffusion problem. J. Phys. A Math. Theor. 44, 465206.Google Scholar
[18]Michelitsch, T. M., Gao, H. & Levin, V. M. (2003) Dynamic Eshelby tensor and potentials for ellipsoidal inclusions. Proc. R. Soc. 459 (2032), 863890.Google Scholar
[19]Michelitsch, T. M., Maugin, G. A., Nicolleau, F. C. G. A., Nowakowski, A. F. & Derogar, S. (2009) Dispersion relations and wave operators in self-similar quasicontinuous linear chains. Phys. Rev. E 80, 011135.CrossRefGoogle ScholarPubMed
[20]Ostoja-Starzewski, M. (2007) Towards a thermomechanics of fractal media. ZAMP 58, 10851096.Google Scholar
[21]Peitgen, H.-O., Jürgens, H. & Saupe, D. (1991) Fractals for the Classroom: Part 1: Introduction to Fractals and Chaos, Springer, New York, ISBN: 10: 9780387970417.Google Scholar
[22]Sapoval, B. (1997) Universalités et Fractales, Flammarion, Paris, France, ISBN: 2-08-081466-4.Google Scholar
[23]Zähle, M. & Ziezold, H. (1996) Fractional derivatives of Weierstrass-type functions. J. Comput. Appl. Math. 76, 265275.Google Scholar
[24]Yavari, A., Sarkani, S. & Moyer, E. T. (2002) The mechanics of self-similar and self-affine cracks. Int. J. Fracture 114 (1), 127.CrossRefGoogle Scholar