Published online by Cambridge University Press: 17 January 2014
In this work we investigate limiting values of the lift and drag coefficients of profiles in the Helmholtz–Kirchhoff (infinite cavity) flow. The coefficients are based on the wetted arc length of profile surfaces. The problem is to find global minimum and maximum values of the drag coefficient CD under a given lift coefficient CL. We reduce the problem to a constrained problem of calculus of variations and solve it analytically. In so doing we do not only determine extremals but also strictly prove that these extremals realize global extrema. The proofs are based on non-trivial application of Jensen's inequality. The solution of the problem allows us to construct the domain of possible variations of coefficients CL and CD and define maximum and minimum values of the lift-to-drag ratios CL/CD for a given CL.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.