Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T16:49:18.246Z Has data issue: false hasContentIssue false

Existence and stability of bistable wavefronts in a nonlocal delayed reaction–diffusion epidemic system

Published online by Cambridge University Press:  24 March 2020

KUN LI
Affiliation:
School of Mathematics and Computational Science, Hunan First Normal University, Changsha, Hunan410205, People’s Republic of China email: kli@mail.bnu.edu.cn
XIONG LI
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing100875, People’s Republic of China email: xli@bnu.edu.cn

Abstract

In this paper, we consider the monotone travelling wave solutions of a reaction–diffusion epidemic system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed system and choosing suitable small positive constants to define a pair of new upper and lower solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone travelling wave solutions will be established with the help of the upper and lower solution method and the exponential asymptotic stability.

Type
Papers
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, S. (2007) Traveling wavefronts for generalized Fisher equations with spatio-temporal delays. J. Diff. Equations 232, 104133.CrossRefGoogle Scholar
Anita, S. & Capasso, V. (2002) A stablizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic systems. Nonlinear Anal. RWA. 3, 453464.CrossRefGoogle Scholar
Ashwin, P., Bartuccelli, M. V., Bridges, T. J. & Gourley, S. A. (2002) Traveling fronts for the KPP equation with spatio-temporal delay. Z. Angew. Math. Phys. 53, 103122.CrossRefGoogle Scholar
Bates, P. W. & Chen, F. (2006) Spectral analysis of traveling waves for nonlocal evolution equations. SIAM J. Math. Anal. 38, 116126.CrossRefGoogle Scholar
Capasso, V. (1984) Asymptotic stability for an integro-differential reaction-diffusion system. J. Math. Anal. Appl. 103, 575588.CrossRefGoogle Scholar
Capasso, V. (1993) Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics, Vol. 97, Springer-Verlag, Heidelberg. Second corrected printing, 2008.Google Scholar
Capasso, V. & Kunisch, K. (1988) A reaction-diffusion system arising in modelling man-environment diseases. Quart. Appl. Math. 46, 431450.CrossRefGoogle Scholar
Capasso, V. & Maddalena, L. (1981) Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Bio. 13, 173184.CrossRefGoogle ScholarPubMed
Capasso, V. & Maddalena, L. (1981) A nonlinear diffusion system modelling the spread of oro-faecal diseases. In: Lakshmikantham, V. (editor), Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York.Google Scholar
Capasso, V. & Maddalena, L. (1981) Asymptotic behaviour for a system of nonlinear diffusion equations modelling the spread of oro-faecal diseases. Rend. dell’Acc. Sc. Fis. Mat. in Napoli.Google Scholar
Capasso, V. & Maddalena, L. (1982) Saddle point behavior for a reaction-diffusion system: application to a class of epidemic region. Math. Comput. Simul. 24, 540547.CrossRefGoogle Scholar
Capasso, V. & Paveri-Fontana, S. L. (1979) A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Revue d’Epidemiol. et de Santé Publique 27, 121132.Google ScholarPubMed
Capasso, V. & Wilson, R. E. (1997) Analysis of reaction-diffusion system modeling man-environment-man epidemics. SIAM. J. Appl. Math. 57, 327346.Google Scholar
Chen, X. (1997) Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equation. Adv. Differ. Equations 2, 125160.Google Scholar
Daners, I. D. & Medina, P. K. (1992) Abstract Evolution Equation: Periodic Problems and Application, Pitman Research Notes in Mathematics, Vol. 279, Longman Sci. & Tech.Google Scholar
Evans, L. C. (1998) Partial Differential Equations, American Mathematical Society, Providence, RI.Google Scholar
Gourley, S. A. & Ruan, S. (2003) Convergence and traveling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal. 35, 806822.CrossRefGoogle Scholar
Huang, J. & Zou, X. (2002) Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays. J. Math. Anal. Appl. 271, 455466.CrossRefGoogle Scholar
Huang, J. & Zou, X. (2003) Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity. Discrete. Cont. Dyn. Syst. 9, 925936.CrossRefGoogle Scholar
Huang, J. & Zou, X. (2006) Travelling wave solutions in delayed reaction diffusion systems with partial monotonicity. Acta Math. Appl. Sin. Engl. Ser. 22, 243256.CrossRefGoogle Scholar
Li, K. & Li, X. (2009) Travelling wave solutions in diffusive and competition-cooperation systems with delays. IMA J. Appl. Math. 74, 604621.CrossRefGoogle Scholar
Li, W., Lin, G. & Ruan, S. (2006) Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems. Nonlinearity 19, 12531273.CrossRefGoogle Scholar
Lin, G. & Li, W. T. (2008) Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays. J. Differ. Equations 244, 487513.CrossRefGoogle Scholar
Ma, S. (2001) Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differential Equations 171, 294314.CrossRefGoogle Scholar
Martin, R. H. & Smith, H. L. (1990) Abstract functional differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc. 321, 144.Google Scholar
Mischaikow, K. & Hutson, V. (1993) Traveling waves for mutualist species. SIAM J. Math. Anal. 24, 9871008.CrossRefGoogle Scholar
Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York.Google Scholar
Rauch, J. & Smoller, J. A. (1978) Qualitative theory of the Fitzhug-Nagumo equations. Adv. Math. 27, 1244.CrossRefGoogle Scholar
Ruan, S. & Wu, J. (1994) Reaction-diffsion systems with infite delay. Canad. Appl. Math. Quart. 2, 485550.Google Scholar
Sattinger, D. H. (1976) On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312355.CrossRefGoogle Scholar
Smith, H. L. & Zhao, X. (2000) Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31, 514534.CrossRefGoogle Scholar
Smoller, J. (1994) Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York.CrossRefGoogle Scholar
So, J. W. H., Wu, J. & Zou, X. (2003) A reaction-diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains. Proc. R. Soc. Lond. Ser. A 457, 18411853.CrossRefGoogle Scholar
Thieme, H. R. & Zhao, X. Q. (2003) Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differential Equations 195, 430470.CrossRefGoogle Scholar
Volpert, A. I., Volpert, V. A. & Volpert, V. A. (1994) Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Vol. 140, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Volpert, V. A. & Volpert, A. I. (1997) Location of spectrum and stability of solutions for monotone parabolic systems. Adv. Differ. Equations 2, 811830.Google Scholar
Wang, Z. C., Li, W. T. & Ruan, S. (2006) Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays. J. Differ. Equations 222, 185232.CrossRefGoogle Scholar
Wang, Z. C., Li, W. T. & Ruan, S. (2007) Existence and stability of traveling wavefronts in reaction advection diffusion equations with nonlocal delay. J. Differ. Equations 238, 153200.CrossRefGoogle Scholar
Wu, S. L. & Liu, S. Y. (2009) Asymptotic speed of spread and traveling fronts for a nonlocal reaction-diffusion model with distributed delay. Appl. Math. Model. 33, 27572765.CrossRefGoogle Scholar
Wu, J. & Zou, X. (2001) Traveling wave fronts of reaction diffusion systems with delay. J. Dynam. Differ. Equations 13, 651687.CrossRefGoogle Scholar
Xu, D. & Zhao, X. Q. (2004) Bistable waves in an epidemic model. J. Dynam. Differ. Equations 16, 679707.CrossRefGoogle Scholar
Xu, D. & Zhao, X. Q. (2005) Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete Contin. Dyn. Sys. Ser B 5, 10431056.Google Scholar
Ye, Q. & Li, Z. (1990) Introduction to Reaction-Diffusion Equations, Science Press, Beijing.Google Scholar
Yu, Z. X. & Mei, M. (2016) Uniqueness and stability of traveling waves for cellular neural networks with multiple delays. J. Differ. Equations 260, 241267.CrossRefGoogle Scholar