Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T00:10:51.879Z Has data issue: false hasContentIssue false

On the structure of generalized Poisson–Boltzmann equations

Published online by Cambridge University Press:  20 November 2015

N. GAVISH
Affiliation:
Department of Mathematics, Technion–Israel Institute of Technology, Haifa, Israel email: ngavish@tx.technion.ac.il
K. PROMISLOW
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, MI, USA email: kpromisl@math.msu.edu

Abstract

In this work, we analyse a broad class of generalized Poisson–Boltzmann equations and reveal a common mathematical structure. In the limit of a wide electrode, we show that a broad class of generalized Poisson–Boltzmann equations admits a reduction that affords an explicit connection between the functional form of the corresponding free energy and the associated differential capacitance data. We exploit the relation to we show that differential capacitance curves generically undergo an inflection transition with increasing salt concentration, shifting from a local minimum near the point of zero charge for dilute solutions to a local maximum point near the point of zero charge for concentrated solutions. In addition, we develop a robust numerical method for solving generalized Poisson–Boltzmann equations which is easily applicable to the broad class of generalized Poisson–Boltzmann equations with very few code adjustments required for each model

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bazant, M. Z., Sabri, Kilic M., Storey, B. D. & Ajdari, A. (2009) Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152 (1–2), 4888.Google Scholar
[2] Ben-Yaakov, D., Andelman, D., Harries, D. & Podgornik, R. (2009) Beyond standard Poisson–Boltzmann theory: Ion-specific interactions in aqueous solutions. J. Phys.: Condens. Matter 21 (42), 424106.Google ScholarPubMed
[3] Ben-Yaakov, D., Andelman, D. & Podgornik, R. (2011) Dielectric decrement as a source of ion-specific effects. J. Chem. Phys. 134 (7), 074705.CrossRefGoogle ScholarPubMed
[4] Ben-Yaakov, D., Andelman, D., Podgornik, R. & Harries, D. (2011) Ion-specific hydration effects: Extending the Poisson-Boltzmann theory. Curr. Opin. Colloid Interface Sci. 16 (6), 542550.Google Scholar
[5] Bikerman, J. J. (1942) Xxxix. structure and capacity of electrical double layer. Phil. Mag. 33 (220), 384397.Google Scholar
[6] Booth, F. (1951) The dielectric constant of water and the saturation effect. J. Chem. Phys. 19 (4), 391394.CrossRefGoogle Scholar
[7] Boublík, T. (1970) Hard-sphere equation of state. J. Chem. Phys. 53 (1), 471472.Google Scholar
[8] Di Caprio, D., Borkowska, Z. & Stafiej, J. (2003) Simple extension of the Gouy–Chapman theory including hard sphere effects: Diffuse layer contribution to the differential capacity curves for the electrode? electrolyte interface. J. Electroanalytical Chem. 540 (1), 1723.CrossRefGoogle Scholar
[9] di Caprio, D., Borkowska, Z. & Stafiej, J. (2004) Specific ionic interactions within a simple extension of the Gouy–Chapman theory including hard sphere effects. J. Electroanal. Chem. 572 (1), 5159.Google Scholar
[10] Eisenberg, B. (2013) Interacting ions in biophysics: Real is not ideal. Biophys. J. 104 (9), 18491866.CrossRefGoogle Scholar
[11] Fedorov, M. V. & Kornyshev, A. A. (2014) Ionic liquids at electrified interfaces. Chem. Rev. 114 (5), 29783036.CrossRefGoogle ScholarPubMed
[12] Hatlo, M. M., van Roij, R. & Lue, L. (2012) The electric double layer at high surface potentials: The influence of excess ion polarizability. EPL (Europhys. Lett.) 97 (2), 28010.Google Scholar
[13] Horng, T.-L., Lin, T.-C., Liu, C. & Eisenberg, B. S. (2012) PNP equations with steric effects: A model of ion flow through channels. J. Phys. Chem. B 116 (37), 1142211441.CrossRefGoogle Scholar
[14] Islam, M. M., Alam, M. T. & Ohsaka, T. (2008) Electrical double-layer structure in ionic liquids: A corroboration of the theoretical model by experimental results. J. Phys. Chem. C 112 (42), 1656816574.Google Scholar
[15] Kilic, M., Bazant, M. Z. & Ajdari, A. (2007) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75 (2), 021502.CrossRefGoogle ScholarPubMed
[16] Kornyshev, A. A. (2007) Double-Layer in ionic liquids: Paradigm change? J. Phys. Chem. B 111 (20), 55455557.Google Scholar
[17] López-García, J. J., Horno, J. & Grosse, C. (2011) Poisson–Boltzmann description of the electrical double layer including ion size effects. Langmuir 27 (23), 1397013974.Google Scholar
[18] Mansoori, G. A., Carnahan, N. F., Starling, K. E. & Leland, T. W. Jr (1971) Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 54 (4), 15231525.CrossRefGoogle Scholar
[19] Stern-Hamburg, H. O. (1924) Zur theorie c⋅ der elektrolytischen doppelschicht, Z. Elektrochem. S. f. Electrochemie 30, 508.Google Scholar
[20] Valette, G. (1981) Double layer on silver single crystal electrodes in contact with electrolytes having anions which are slightly specifically adsorbed: Part I. J. Electroanal. Chem. 122, 285297.Google Scholar
[21] Wei, G.-W., Zheng, Q., Chen, Z. & Xia, K. (2012) Variational multiscale models for charge transport. SIAM Rev. 54 (4), 699754.Google Scholar