Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T17:12:19.269Z Has data issue: false hasContentIssue false

Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility

Published online by Cambridge University Press:  24 March 2020

BENOÎT PERTHAME
Affiliation:
Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, F-75005Paris, France emails: Benoit.Perthame@sorbonne-universite.fr; poulain@ljll.math.upmc.fr
ALEXANDRE POULAIN
Affiliation:
Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, F-75005Paris, France emails: Benoit.Perthame@sorbonne-universite.fr; poulain@ljll.math.upmc.fr

Abstract

The degenerate Cahn–Hilliard equation is a standard model to describe living tissues. It takes into account cell populations undergoing short-range attraction and long-range repulsion effects. In this framework, we consider the usual Cahn–Hilliard equation with a singular single-well potential and degenerate mobility. These degeneracy and singularity induce numerous difficulties, in particular for its numerical simulation. To overcome these issues, we propose a relaxation system formed of two second-order equations which can be solved with standard packages. This system is endowed with an energy and an entropy structure compatible with the limiting equation. Here, we study the theoretical properties of this system: global existence and convergence of the relaxed system to the degenerate Cahn–Hilliard equation. We also study the long-time asymptotics which interest relies on the numerous possible steady states with given mass.

Type
Papers
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors have received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (grant agreement No 740623).

References

Abels, H. & Wilke, M. (2007) Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67, 31763193.CrossRefGoogle Scholar
Agosti, A., Antonietti, P. F., Ciarletta, P., Grasselli, M. & Verani, M. (2017) A Cahn-Hilliard-type equation with application to tumor growth dynamics. Math. Methods Appl. Sci. 40, 75987626.CrossRefGoogle Scholar
Agosti, A., Cattaneo, C., Giverso, C., Ambrosi, D. & Ciarletta, P. (2018) A computational framework for the personalized clinical treatment of glioblastoma multiforme. Z. Angew. Math. Mech. 98, 23072327.Google Scholar
Agosti, A., Marchesi, S., Scita, G. & Ciarletta, P. (2019) The self-organised, non-equilibrium dynamics of spontaneous cancerous buds. Preprint, arXiv:1905.08074.Google Scholar
Barrett, J. W., Blowey, J. F. & Garcke, H. (1999) Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37, 286318.CrossRefGoogle Scholar
Ben Amar, M. & Goriely, A. (2005) Growth and instability in elastic tissues. J. Mech. Phys. Solids 53, 22842319.CrossRefGoogle Scholar
Blowey, J. F. & Elliott, C. M. (1991) The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. European J. Appl. Math. 2, 233280.CrossRefGoogle Scholar
Byrne, H. & Preziosi, L. (2004) Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–66.CrossRefGoogle Scholar
Cahn, J. W. (1961) On spinodal decomposition. Acta Metallurgica 9, 795801.CrossRefGoogle Scholar
Cahn, J. W. & Hilliard, J. E. (1958) Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258267.CrossRefGoogle Scholar
Chatelain, C., Ciarletta, P. & Ben Amar, M. (2011) Morphological changes in early melanoma development: influence of nutrients, growth inhibitors and cell-adhesion mechanisms. J. Theor. Biol. 290, 4659.CrossRefGoogle ScholarPubMed
Cherfils, L., Miranville, A. & Zelik, S. (2014) On a generalized Cahn-Hilliard equation with biological applications. DCDS(B) 19, 20132026.Google Scholar
Ciarletta, P., Foret, L. & Ben Amar, M. (2011) The radial growth phase of malignant melanoma: muti-phase modelling, numerical simulation and linear stability. J. R. Soc. Interface 8, 345368.CrossRefGoogle Scholar
Colombo, M. C., Giverso, C., Faggiano, E., Boffano, C., Acerbi, F. & Ciarletta, P. (2015) Towards the personalized treatment of glioblastoma: integrating patient-specific clinical data in a continuous mechanical model. PLoS ONE 10, 123.Google Scholar
Davoli, E., Ranetbauer, H., Scarpa, L. & Trussardi, L. (2019) Degenerate nonlocal Cahn-Hilliard equations: well-posedness, regularity and local asymptotics. Ann. Inst. H. Poincaré C Anal. Non Linéaire.CrossRefGoogle Scholar
Ebenbeck, M. & Garcke, H. (2019) Analysis of a Cahn-Hilliard-Brinkman model for tumour growth with chemotaxis, J. Diff. Equ. 266, 59986036.CrossRefGoogle Scholar
Elliott, C. M. & Garcke, H. (1996) On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404423.CrossRefGoogle Scholar
Elliott, C. M. & Songmu, Z. (1986) On the Cahn-Hilliard equation. Arch. Rat. Mech. Anal. 96, 339357.CrossRefGoogle Scholar
Frigeri, S., Lam, K. F., Rocca, E. & Schimperna, G. (2018) On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials. Commun. Math. Sci. 16, 821856.CrossRefGoogle Scholar
Gal, C. G. & Grasselli, M. (2010) Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2d. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401436.CrossRefGoogle Scholar
Giacomin, G. & Lebowitz, J. L. (1997) Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Statist. Phys. 87, 3761.CrossRefGoogle Scholar
Giacomin, G. & Lebowitz, J. L. (1998) Phase segregation dynamics in particle systems with long range interactions. II. Interface motion. SIAM J. Appl. Math. 58, 17071729.CrossRefGoogle Scholar
Gilardi, G., Miranville, A. & Schimperna, G. (2010) Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Chin. Ann. Math. Ser. B 31, 679712.CrossRefGoogle Scholar
Giorgini, A., Grasselli, M. & Wu, H. (2018) The Cahn-Hilliard-Hele-Shaw system with singular potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 10791118.CrossRefGoogle Scholar
Iuorio, A. & Melchionna, S. (2018) Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete Contin. Dyn. Syst. 38, 37653788.CrossRefGoogle Scholar
Lions, J.-L. (1969) Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Google-Books-ID: PatpMvI_uoYC.Google Scholar
Lowengrub, J., Titi, E. & Zhao, K. (2013) Analysis of a mixture model of tumor growth. European J. Appl. Math. 24, 691734.CrossRefGoogle Scholar
Miranville, A. (2019) The Cahn-Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA.CrossRefGoogle Scholar
Shen, J., Xu, J. & Yang, J. (2019) A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474506.CrossRefGoogle Scholar
Songmu, Z. (1986) Asymptotic behavior of solution to the Cahn-Hillard equation. Appl. Anal. 23, 165184.CrossRefGoogle Scholar
Wise, S. M., Lowengrub, J. S., Frieboes, H. B. & Cristini, V. (2008) Three-dimensional multispecies nonlinear tumor growth–I Model and numerical method. J. Theor. Biol. 253, 524543.CrossRefGoogle ScholarPubMed