Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T22:44:56.509Z Has data issue: false hasContentIssue false

Steady states of thin-film equations with van der Waals force with mass constraint

Published online by Cambridge University Press:  30 May 2022

XINFU CHEN
Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA emails: xinfu@pitt.edu; hqjiang@pitt.edu; gul8@pitt.edu
HUIQIANG JIANG
Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA emails: xinfu@pitt.edu; hqjiang@pitt.edu; gul8@pitt.edu
GUOQING LIU
Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA emails: xinfu@pitt.edu; hqjiang@pitt.edu; gul8@pitt.edu

Abstract

We consider steady states with mass constraint of the fourth-order thin-film equation with van der Waals force in a bounded domain which leads to a singular elliptic equation for the thickness with an unknown pressure term. By studying second-order nonlinear ordinary differential equation,

\begin{equation*}h_{rr}+\frac{1}{r}h_{r}=\frac{1}{\alpha}h^{-\alpha}-p\end{equation*}
we prove the existence of infinitely many radially symmetric solutions. Also, we perform rigorous asymptotic analysis to identify the blow-up limit when the steady state is close to a constant solution and the blow-down limit when the maximum of the steady state goes to the infinity.

Type
Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almgren, R., Bertozzi, A. & Brenner, M. P. (1996) Stable and unstable singularities in the unforced Hele-Shaw cell. Phys. Fluids 8(6), 13561370.Google Scholar
Barenblatt, G. I., Beretta, E. & Bertsch, M. (1997) The problem of the spreading of a liquid film along a solid surface: a new mathematical formulation. Proc. Nat. Acad. Sci. U.S.A. 94(19), 1002410030.CrossRefGoogle Scholar
Beretta, E. (1997) Selfsimilar source solutions of a fourth order degenerate parabolic equation. Nonlinear Anal. 29(7), 741760.Google Scholar
Bertozzi, A. L., Grün, G. & Witelski, T. P. (2001) Dewetting films: bifurcations and concentrations. Nonlinearity 14(6), 15691592.Google Scholar
Bertozzi, A. L. & Pugh, M.(1996) The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Comm. Pure Appl. Math. 49(2), 85123.3.0.CO;2-2>CrossRefGoogle Scholar
Bertozzi, A. L. (1998) The mathematics of moving contact lines in thin liquid films. Notices Am. Math. Soc. 45(6), 689697.Google Scholar
Bertsch, M., Dal Passo, R., Garcke, H. & Grün, G. (1998) The thin viscous flow equation in higher space dimensions. Adv. Differ. Equations 3(3), 417440.CrossRefGoogle Scholar
Chen, X. & Jiang, H.(2012) Singular limit of an energy minimizer arising from dewetting thin film model with van der Waal, Born repulsion and surface tension forces. Calc. Var. Partial Differ. Equations 44(1–2), 221246.CrossRefGoogle Scholar
Constantin, P., Dupont, T. F., Goldstein, R. E., Kadanoff, L. P., Shelley, M. J. & Zhou, S. M. (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E (3) 47(6), 41694181.CrossRefGoogle Scholar
Dupont, T. F., Goldstein, R. E., Kadanoff, L. P. & Zhou, S. M. (1993) Finite-time singularity formation in Hele-Shaw systems. Phys. Rev. E (3), 47(6), 41824196.CrossRefGoogle ScholarPubMed
Ehrhard, P. (1994) The spreading of hanging drops. J. Colloid. Interface Sci. 168(1), 242246.CrossRefGoogle Scholar
Goldstein, R. E., Pesci, A. I. & Shelley, M. J.(1998) Instabilities and singularities in Hele-Shaw flow. Phys. Fluids 10(11), 27012723.CrossRefGoogle Scholar
Guo, Z., Ye, D. & Zhou, F. (2008) Existence of singular positive solutions for some semilinear elliptic equations. Pacific J. Math. 236(1), 5771.CrossRefGoogle Scholar
Jiang, H. (2011) Energy minimizers of a thin film equation with Born repulsion force. Comm. Pure Appl. Anal. 10(2), 803815.CrossRefGoogle Scholar
Jiang, H. & Lin, F.(2004) Zero set of Sobolev functions with negative power of integrability. Chin. Ann. Math. Ser. B 25(1),6572.CrossRefGoogle Scholar
Jiang, H. & Miloua, A. (2013) Point rupture solutions of a singular elliptic equation. Electron. J. Differ. Equations, 70, 8.Google Scholar
Jiang, H. & Ni, W. M. (2007) On steady states of van der Waals force driven thin film equations. Eur. J. Appl. Math. 18(2), 153180.CrossRefGoogle Scholar
Laugesen, R. S. & Pugh, M. C. (2000) Linear stability of steady states for thin film and Cahn-Hilliard type equations. Arch. Ration. Mech. Anal. 154(1), 351.CrossRefGoogle Scholar
Laugesen, R. S. & Pugh, M. C. (2000) Properties of steady states for thin film equations. Eur. J. Appl. Math. 11(3), 293351.Google Scholar
Laugesen, R. S. & Pugh, M. C. (2002) Energy levels of steady states for thin-film-type equations. J. Differ. Equations 182(2), 377415.CrossRefGoogle Scholar
Laugesen, R. S. & Pugh, M. C. (2002) Heteroclinic orbits, mobility parameters and stability for thin film type equations. Electron. J. Differ. Equations, No. 95, 29.Google Scholar
Liu, G. (2015) On the Steady States of Thin Film Equations. PhD thesis, University of Pittsburgh.Google Scholar
Pino, M. & Hernandez, G. (1996) Solvability of the Neumann problem in a ball for $\Delta u+u^{\nu}=h(|x|)$ , $\nu>1$ . J. Differ. Equations, 1, 01.1$+.+J.+Differ.+Equations,+1,+01.>Google Scholar
Slepčev. (2009) Linear stability of selfsimilar solutions of unstable thin-film equations. Interfaces Free Bound. 11(3), 375398.Google Scholar
Witelski, T. P. & Bernoff, A. J. (1999) Stability of self-similar solutions for van der Waals driven thin film rupture. Phys. Fluids 11(9), 24432445.CrossRefGoogle Scholar
Witelski, T. P. & Bernoff, A. J. (2000) Dynamics of three-dimensional thin film rupture. Phys. D 147(1–2), 155176.CrossRefGoogle Scholar