Article contents
Coarse graining of a Fokker–Planck equation with excluded volume effects preserving the gradient flow structure
Published online by Cambridge University Press: 22 September 2020
Abstract
The propagation of gradient flow structures from microscopic to macroscopic models is a topic of high current interest. In this paper, we discuss this propagation in a model for the diffusion of particles interacting via hard-core exclusion or short-range repulsive potentials. We formulate the microscopic model as a high-dimensional gradient flow in the Wasserstein metric for an appropriate free-energy functional. Then we use the JKO approach to identify the asymptotics of the metric and the free-energy functional beyond the lowest order for single particle densities in the limit of small particle volumes by matched asymptotic expansions. While we use a propagation of chaos assumption at far distances, we consider correlations at small distance in the expansion. In this way, we obtain a clear picture of the emergence of a macroscopic gradient structure incorporating corrections in the free-energy functional due to the volume exclusion.
- Type
- Papers
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
References
- 5
- Cited by