Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T06:30:24.822Z Has data issue: false hasContentIssue false

Detection of core–periphery structure in networks using spectral methods and geodesic paths

Published online by Cambridge University Press:  03 August 2016

MIHAI CUCURINGU
Affiliation:
Department of Mathematics, UCLA, Los Angeles, CA, USA emails: mihai@math.ucla.edu, rombach@math.ucla.edu
PUCK ROMBACH
Affiliation:
Department of Mathematics, UCLA, Los Angeles, CA, USA emails: mihai@math.ucla.edu, rombach@math.ucla.edu
SANG HOON LEE
Affiliation:
Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, UK email: porterm@maths.ox.ac.uk School of Physics, Korea Institute for Advanced Study, Seoul, Korea email: lshlj82@kias.re.kr
MASON A. PORTER
Affiliation:
Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, UK email: porterm@maths.ox.ac.uk CABDyN Complexity Centre, University of Oxford, Oxford, UK

Abstract

We introduce several novel and computationally efficient methods for detecting “core–periphery structure” in networks. Core–periphery structure is a type of mesoscale structure that consists of densely connected core vertices and sparsely connected peripheral vertices. Core vertices tend to be well-connected both among themselves and to peripheral vertices, which tend not to be well-connected to other vertices. Our first method, which is based on transportation in networks, aggregates information from many geodesic paths in a network and yields a score for each vertex that reflects the likelihood that that vertex is a core vertex. Our second method is based on a low-rank approximation of a network's adjacency matrix, which we express as a perturbation of a tensor-product matrix. Our third approach uses the bottom eigenvector of the random-walk Laplacian to infer a coreness score and a classification into core and peripheral vertices. We also design an objective function to (1) help classify vertices into core or peripheral vertices and (2) provide a goodness-of-fit criterion for classifications into core versus peripheral vertices. To examine the performance of our methods, we apply our algorithms to both synthetically generated networks and a variety of networks constructed from real-world data sets.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ahn, Y.-Y., Bagrow, J. P. & Lehmann, S. (2010) Link communities reveal multiscale complexity in networks. Nature 466, 761764.CrossRefGoogle ScholarPubMed
[2] Anthonisse, J. M. (1971) The Rush in a Directed Graph, Stichting Mathematisch Centrum, Amsterdam. Available at http://oai.cwi.nl/oai/asset/9791/9791A.pdf.Google Scholar
[3] Arenas, A., Díaz-Guilera, A. & Pérez-Vicente, C. J. (2006) Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102.Google Scholar
[4] Ball, B., Karrer, B. & Newman, M. E. J. (2011) Efficient and principled method for detecting communities in networks. Phys. Rev. E 84, 036103.Google Scholar
[5] Barranca, V. J., Zhou, D. & Cai, D. (2015) Low-rank network decomposition reveals structural characteristics of small-world networks. Phys. Rev. E 92, 062822.CrossRefGoogle ScholarPubMed
[6] Barucca, P., Tantari, D. & Lillo, F. (2016) Centrality metrics and localization in core–periphery networks. J. Stat. Mech. Theor. Exp. 2016, 023401.Google Scholar
[7] Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. (2003) The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U.S.A. 100, 93839387.CrossRefGoogle ScholarPubMed
[8] Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M. & Grafton, S. T. (2011) Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U.S.A. 108, 76417646.Google Scholar
[9] Bassett, D. S., Wymbs, N. F., Rombach, M. P., Porter, M. A., Mucha, P. J. & Grafton, S. T. (2013) Task-based core–periphery organization of human brain dynamics. PLoS Comput. Biol. 9, e1003171.CrossRefGoogle ScholarPubMed
[10] Belkin, M. & Niyogi, P. (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 13731396.Google Scholar
[11] Benaych-Georges, F. & Nadakuditi, R. R. (2011) The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227, 494521.Google Scholar
[12] Bhatia, R. (1997) Matrix Analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
[13] Borgatti, S. P. & Everett, M. G. (1999) Models of core/periphery structures. Soc. Netw. 21, 375395.Google Scholar
[14] Borgatti, S. P., Everett, M. G. & Freeman, L. C. (2011) UCINET, version 6.289. Available at http://www.analytictech.com/ucinet/.Google Scholar
[15] Boyd, J. P., Fitzgerald, W. J., Mahutga, M. C. & Smith, D. A. (2010) Computing continuous core/periphery structures for social relations data with MINRES/SVD. Soc. Netw. 32, 125137.Google Scholar
[16] Brandes, U. (2001) A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163177.Google Scholar
[17] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z. & Wagner, D. (2008) On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172188.Google Scholar
[18] Chase-Dunn, C. (1989) Global Formation: Structures of the World-Economy, Basil Blackwell, Oxford, UK.Google Scholar
[19] Chen, J. & Yuan, B. (2006) Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22, 22832290.CrossRefGoogle ScholarPubMed
[20] Chung, F. R. K. (1997) Spectral Graph Theory, CBMS Regional Conference Series, American Mathematical Society, Providence, RI.Google Scholar
[21] Clauset, A., Arbesman, S. & Larremore, D. B. (2015) Systematic inequality and hierarchy in faculty hiring networks. Sci. Adv. 1, e1400005.Google Scholar
[22] Coifman, R. R. & Lafon, S. (2006) Diffusion maps. Appl. Comput. Harmon. Anal. 21, 530.CrossRefGoogle Scholar
[23] Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F. & Zucker, S. W. (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl. Acad. Sci. U.S.A. 102, 74267431.Google Scholar
[24] Colizza, V., Flammini, A., Serrano, M. A. & Vespignani, A. (2006) Detecting rich-club ordering in complex networks. Nat. Phys. 2, 110115.Google Scholar
[25] Comrey, A. L. (1962) The minimum residual method of factor analysis. Psychol. Rep. 11, 1518.Google Scholar
[26] Csermely, P., London, A., Wu, L.-Y. & Uzzi, B. (2013) Structure and dynamics of core/periphery networks. J. Cplx. Netw. 1, 93123.Google Scholar
[27] da Silva, M. R., Ma, H. & Zeng, A.-P. (2008) Centrality, network capacity, and modularity as parameters to analyze the core–periphery structure in metabolic networks. Proc. IEEE 96, 14111420.Google Scholar
[28] Darlington, R. B., Weinberg, S. L. & Walberg, H. J. (1973) Canonical variate analysis and related techniques. Rev. Educ. Res. 43, 433454.Google Scholar
[29] Della-Rossa, F. D., Dercole, F. & Piccardi, C. (2013) Profiling core–periphery network structure by random walkers. Sci. Rep. 3, 1467.Google Scholar
[30] Doreian, P. (1985) Structural equivalence in a psychology journal network. J. Assoc. Inf. Sci. 36, 411417.Google Scholar
[31] Edler, D. & Rosvall, M. (2010) The map generator software package (2010 network scientist coauthorship network). Accessed 12 September 2014. Available at http://mapequation.org/downloads/netscicoauthor2010.net.Google Scholar
[32] Erdős, P. & Rényi, A. (1959) On random graphs I. Publ. Math. Debrecen 6, 290297.Google Scholar
[33] Everett, M. G. & Valente, T. W. (2016) Bridging, brokerage and betweenness. Soc. Netw. 44, 202208.Google Scholar
[34] Féral, D. & Péché, S. (2007) The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys. 272, 185228.Google Scholar
[35] Fortunato, S. (2010) Community detection in graphs. Phys. Rep. 486, 75174.Google Scholar
[36] Freeman, L. C. (1977) A set of measures of centrality based on betweenness. Sociometry 40, 3541.Google Scholar
[37] Gilbert, E. N. (1959) Random graphs. Ann. Math. Stat. 30, 11411144.Google Scholar
[38] Girvan, M. & Newman, M. E. J. (2002) Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 78217826.Google Scholar
[39] Goemans, M. X. & Williamson, D. P. (1995) Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 11151145.Google Scholar
[40] González, M. C., Herrmann, H. J., Kertész, J. & Vicsek, T. (2007) Community structure and ethnic preferences in school friendship networks. Physica A 379, 307316.Google Scholar
[41] Good, B. H., de Montjoye, Y.-A. & Clauset, A. (2010) Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106.CrossRefGoogle ScholarPubMed
[42] Grant, M. & Boyd, S. (2008) Graph implementations for nonsmooth convex programs, In: Blondel, V., Boyd, S. & Kimura, H. (editors), Recent Advances in Learning and Control, Lecture Notes Contr. Inf. Sci., Springer-Verlag, Berlin, Germany, pp. 95110.Google Scholar
[43] Guattery, S. & Miller, G. L. (1995) On the performance of spectral graph partitioning methods. In: Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms, SODA '95, January 22–24, 1995, San Francisco, CA, USA. SIAM, Philadelphia, PA, USA, pp. 233242.Google Scholar
[44] Holme, P. (2005) Core–periphery organization of complex networks. Phys. Rev. E 72, 046111.Google Scholar
[45] Holme, P. & Saramäki, J. (2012) Temporal networks. Phys. Rep. 519, 97125.Google Scholar
[46] Jeub, L. G. S., Balachandran, P., Porter, M. A., Mucha, P. J. & Mahoney, M. W. (2015) Think locally, act locally: Detection of small, medium-sized, and large communities in large networks. Phys. Rev. E 91, 012821.CrossRefGoogle ScholarPubMed
[47] Jeub, L. G. S., Mahoney, M. W., Mucha, P. J. & Porter, M. A. (2015) A local perspective on community structure in multilayer networks, arXiv:1510.05185.Google Scholar
[48] Kelmans, A. K. (1965) The number of trees of a graph I. Aut. Remote Contr. 26, 21182129.Google Scholar
[49] Kelmans, A. K. (1966) The number of trees of a graph II. Aut. Remote Contr. 27, 233241.Google Scholar
[50] Kelmans, A. K. (1997) Transformations of a graph increasing its Laplacian polynomial and number of spanning trees. Europ. J. Comb. 18, 3548.Google Scholar
[51] Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E. & Makse, H. A. (2010) Identification of influential spreaders in complex networks. Nat. Phys. 6, 888893.Google Scholar
[52] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A. (2014) Multilayer networks. J. Cplx. Netw. 2, 203271.Google Scholar
[53] Krugman, P. (1996) The Self-Organizing Economy, Oxford University Press, Oxford, UK.Google Scholar
[54] Laumann, E. O. & Pappi, F. U. (1976) Networks of Collective Action: A Perspective on Community Influence, Academic Press, New York, NY, USA.Google Scholar
[55] Lee, S. H. (2016) Network nestedness as generalized core–periphery structures. Phys. Rev. E 93, 022306.Google Scholar
[56] Lee, S. H., Cucuringu, M. & Porter, M. A. (2014) Density-based and transport-based core–periphery structures in networks. Phys. Rev. E 89, 032810.Google Scholar
[57] Lewis, A. C. F., Jones, N. S., Porter, M. A. & Deane, C. M. (2010) The function of communities in protein interaction networks at multiple scales. BMC Syst. Biol. 4, 100.Google Scholar
[58] McLachlan, G. & Peel, D. (2000) Finite Mixture Models, Wiley-Interscience, Hoboken, NJ, USA.Google Scholar
[59] Meilǎ, M. & Shi, J. (2001) A random walks view of spectral segmentation. In: 8th International Workshop on Artificial Intelligence and Statistics (AISTATS), Key West, FL, USA.Google Scholar
[60] Morone, F. & Makse, H. A. (2015) Influence maximization in complex networks through optimal percolation. Nature 524, 6568.CrossRefGoogle ScholarPubMed
[61] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876878.Google Scholar
[62] Nesterov, Y. (2004) Introductory Lectures on Convex Optimization: A Basic Course, Applied optimization, Kluwer Academic Publ., Dordrecht, the Netherlands.Google Scholar
[63] Newman, M. E. J. (2005) A measure of betweenness centrality based on random walks. Soc. Netw. 27, 3954.Google Scholar
[64] Newman, M. E. J. (2006) Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104.Google Scholar
[65] Newman, M. E. J. (2010) Networks: An Introduction, Oxford University Press, UK.Google Scholar
[66] Newman, M. E. J. & Girvan, M. (2003) Mixing patterns and community structure in networks. In: Pastor-Satorras, R., Rubi, M. & Díaz-Guilera, A. (editors), Statistical Mechanics of Complex Networks Lecture Notes in Physics, vol. 625, Springer-Verlag, Berlin, Germany, pp. 6687.Google Scholar
[67] Newman, M. E. J. & Girvan, M. (2004) Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113.Google Scholar
[68] Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J. & Barabási, A. L. (2007) Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 73327336.Google Scholar
[69] Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814818.Google Scholar
[70] Peixoto, T. P. (2014) Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047.Google Scholar
[71] Piccardi, C. (2011) Finding and testing network communities by lumped Markov chains. PLoS ONE 6, e27028.Google Scholar
[72] Pons, P. & Latapy, M. (2006) Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10, 191218.Google Scholar
[73] Porter, M. A., Mucha, P. J., Newman, M. E. J. & Warmbrand, C. M. (2005) A network analysis of committees in the U.S. House of Representatives. Proc. Natl. Acad. Sci. U.S.A. 102, 70577062.CrossRefGoogle ScholarPubMed
[74] Porter, M. A., Onnela, J.-P. & Mucha, P. J. (2009) Communities in networks. Notices Amer. Math. Soc. 56, 10821097, 1164–1166.Google Scholar
[75] Richardson, T., Mucha, P. J. & Porter, M. A. (2009) Spectral tripartitioning of networks. Phys. Rev. E 80, 036111.Google Scholar
[76] Rombach, M. P., Porter, M. A., Fowler, J. H. & Mucha, P. J. (2014) Core–periphery structure in networks. SIAM J. Appl. Math. 74, 167190.Google Scholar
[77] Rossi, R. A. & Ahmed, N. K. (2015) Role discovery in networks. IEEE Trans. Knowl. Data Eng. 27, 11121131.Google Scholar
[78] Rosvall, M. & Bergstrom, C. T. (2008) Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105, 11181123.Google Scholar
[79] Roweis, S. T. & Saul, L. K. (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290, 23232326.Google Scholar
[80] Shi, J. & Malik, J. (2000) Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888905.Google Scholar
[81] Singer, A. (2011) Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmon. Anal. 30, 2036.Google Scholar
[82] Smith, D. A. & White, D. R. (1992) Structure and dynamics of the global economy: Network analysis of international trade. Soc. Forces 70, 857893.Google Scholar
[83] Spielman, D. A. & Teng, S.-H. (1996) Spectral partitioning works: Planar graphs and finite element meshes. In: Foundations Of Computer Science (FOCS), IEEE Computer Society, Washington, D.C., USA, pp. 96105.Google Scholar
[84] Spielman, D. A. & Teng, S.-H. (2007) Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra Appl. 421, 284305. Special Issue in honor of Miroslav Fiedler.Google Scholar
[85] Steiber, S. (1979) The world system and world trade: An empirical explanation of conceptual conflicts. Sociol. Quart. 20, 2326.Google Scholar
[86] Traud, A. L., Kelsic, E. D., Mucha, P. J. & Porter, M. A. (2011) Comparing community structure to characteristics in online collegiate social networks. SIAM Rev. 53, 526543.Google Scholar
[87] Traud, A. L., Mucha, P. J. & Porter, M. A. (2012) Social structure of Facebook networks. Physica A 391, 41654180.Google Scholar
[88] Valente, T. W. & Fujimoto, K. (2010) Bridging: Locating critical connectors in a network. Soc. Netw. 32, 212220.Google Scholar
[89] Verma, T., Russmann, F., Araújo, N. A. M., Nagler, J. & Hermann, H. J. (2016) Emergence of core–peripheries in networks. Nat. Commun. 7, 10441.Google Scholar
[90] Wallerstein, I. (1974) The Modern World-System I: Capitalist Agriculture and the Origins of the European World-Economy in the Sixteenth Century, Academic Press, New York, NY, USA.Google Scholar
[91] Yang, J. & Leskovec, J. (2014) Structure and overlaps of ground-truth communities in networks. ACM Trans. Intell. Syst. Technol. 5, 26.Google Scholar
[92] Zhang, X., Martin, T. & Newman, M. E. J. (2015) Identification of core–periphery structure in networks. Phys. Rev. E 91, 032803.Google Scholar