Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T04:49:25.776Z Has data issue: false hasContentIssue false

Elastic-plated gravity currents

Published online by Cambridge University Press:  10 October 2014

I. J. HEWITT
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, Canada email: hewitt@maths.ox.ac.uk
N. J. BALMFORTH
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, Canada email: hewitt@maths.ox.ac.uk
J. R. DE BRUYN
Affiliation:
Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada

Abstract

We consider a nonlinear diffusion equation describing the planar spreading of a viscous fluid injected between an elastic sheet and an underlying rigid plane. The dynamics depends sensitively on the physical conditions at the contact line where the sheet is lifted off the plane by the fluid. We explore two possibilities for these conditions (or “regularisations”): a pre-wetted film and a constant-pressure fluid lag (a gas-filled gap between the fluid edge and the contact line). For both flat and inclined planes, we compare numerical and asymptotic solutions, identifying the distinct stages of evolution and the corresponding characteristic rates of spreading.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aristoff, J. M., Duprat, C. & Stone, H. A. (2011) Elastocapillary imbibition. Int. J. Non-Linear Mech. 46, 648656.Google Scholar
[2]Benilov, E. S., Chapman, S. J., McLeod, J. B., Ockendon, J. R. & Zubkov, V.S. (2010) On liquid films on an inclined plane. J. Fluid Mech. 663, 5369.CrossRefGoogle Scholar
[3]Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. (2009) Wetting and spreading Rev. Mod. Phys. 81, 739805.CrossRefGoogle Scholar
[4]Bunger, A. P. & Detournay, E. (2005) Asymptotic solution for a penny-shaped near-surface hydraulic fracture. Eng. Fract. Mech. 72, 24682486.CrossRefGoogle Scholar
[5]Chopin, J., Vella, D. & Boudaoud, A. (2008) The liquid blister test. Proc. R. Soc. A 464, 28872906.Google Scholar
[6]Craster, R. V. & Matar, O. K. (2009) Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.CrossRefGoogle Scholar
[7]Das, S. B., Joughin, I., Behn, M., Howat, I., King, M. A., Lizarralde, D. & Bhatia, M. P. (2008) Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 320, 778781.Google Scholar
[8]Duchemin, L., Lister, J. R. & Lange, U. (2005) Static shapes of levitated viscous drops. J. Fluid Mech. 533, 161170.CrossRefGoogle Scholar
[9]Flitton, J. C. & King, J. R. (2004) Moving-boundary and fixed-domain problems for a sixth-order thin-film equation. Eur. J. Appl. Math. 15, 713754.CrossRefGoogle Scholar
[10]Garagash, D. & Detournay, E. (2000) The tip region of a fluid-driven fracture in an elastic medium. J. Appl. Mech. 67, 183192.Google Scholar
[11]Gaver, D. P., Halpern, D., Jensen, O. E. & Grotberg, J. B. (1996) The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319, 2565.CrossRefGoogle Scholar
[12]Gordeliy, E. & Detournay, E. (2011) A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag. Int. J. Numer. Anal. Methods Geomech. 35, 602629.Google Scholar
[13]Heil, M. & Hazel, A. (2011) Fluid-structure interaction in internal physiological flows. Ann. Rev. Fluid Mech. 43, 141162.Google Scholar
[14]Hosoi, A. E. and Mahadevan, L. (2004) Peeling, healing and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802.Google Scholar
[15]Huppert, H. E. (1982) The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.Google Scholar
[16]Huang, R. & Suo, Z. (2002) Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 91, 11351142.Google Scholar
[17]Khomenko, M. (2010) Viscous Fluid Instabilities Under an Elastic Sheet. MSc. Thesis, University of British Columbia.Google Scholar
[18]King, J. R. & Bowen, M. (2001) Moving boundary problems and non-uniqueness for the thin film equation. Eur. J. Appl. Math. 12, 321356.CrossRefGoogle Scholar
[19]King, J. R. (1989) The isolation oxidation of silicon the reaction-controlled case. SIAM J. Appl. Math. 49, 10641080.CrossRefGoogle Scholar
[20]Lister, J. R. (1990) Buoyancy-driven fluid fracture: The effects of material toughness and of low-viscosity precursors. J. Fluid Mech. 210, 263280.CrossRefGoogle Scholar
[21]Lister, J. R. (1992) Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631653.Google Scholar
[22]Lister, J. R., Peng, G. G. & Neufeld, J. (2013) Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111, 154501.Google Scholar
[23]Michaut, C. (2011) Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res. 116, doi:10.1029/2010JB008108.Google Scholar
[24]Myers, T. G. (1998) Thin films with high surface tension. SIAM Rev. 40, 441462.Google Scholar
[25]Pihler-Puzović, D., Illien, P., Heil, M. & Juel, A. (2012) Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502.Google Scholar
[26]Tanner, L. H. (1979) The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 14731484.Google Scholar
[27]Tsai, V. C. & Rice, J. R. (2012) Modeling turbulent hydraulic fracture near a free surface. J. Appl. Mech. 79, 031003.CrossRefGoogle Scholar
[28]Tuck, E. O. & Schwartz, L. W. (1990) A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev. 32, 453469.CrossRefGoogle Scholar
[29]Tuck, E. O. & Schwartz, L. W. (1991) Thin static drops with a free attachment boundary. J. Fluid Mech. 223, 313324.CrossRefGoogle Scholar
[30]Voinov, O. V. (1977) Inclination angles of the boundary in moving liquid layers. J. Appl. Mech. Tech. Phys. 18, 216222.Google Scholar
[31]Wilson, S. D. R. & Jones, A. F. (1983) The entry of a falling film into a pool and the air-entrainment problem. J. Fluid Mech. 128, 219230.Google Scholar