Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T06:44:47.535Z Has data issue: false hasContentIssue false

Existence and uniqueness of radially symmetric stationary points within the gradient theory of phase transitions

Published online by Cambridge University Press:  26 September 2008

Barbara S. Niethammer
Affiliation:
Institut für Angewandte Mathematik, Sonderforschungsbereich 256, Wegelerstr. 6, D-53115 Bonn 1, Germany (email: igel@sfb256@iam.uni-bonn.de)

Extract

We study radially symmetric stationary points of the functional

where u denotes the density of a fluid confined to a container Ω, W(u) is the course-grain free energy and ε accounts for surface energy. Under the further assumption of small energy, that is

for small ε, we prove existence of precisely two solutions for the corresponding Euler-Lagrange equation. Each of these solutions is monotone in the radial direction and converges as ε→0 to one of two possible radially symmetric single interface minimizers of E0. Our main tool is the method of matched asymptotic expansions from which we construct exact solutions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[ABF]Alikakos, N. D., Bates, P. W. & Fusco, G. 1991 Slow motion for the Cahn–Hilliard equation in one space dimension. J. Diff. Eq. 90, 81135.CrossRefGoogle Scholar
[AF]Alikakos, N. D. & Fusco, G. Equilibrium and dynamics of bubbles for the Cahn–Hilliard equation. Preprint.Google Scholar
[AMcK]Alikakos, N. D. & Mckinney, W. R. 1990 Remarks on the equilibrium theory for the Cahn–Hilliard equation in one space dimension. In Reaction Diffusion Equations. (Brown, K. J. & Lacey, A. A., eds). Oxford Science Publications, 7593.Google Scholar
[AS]Alikakos, N. D. & Shaing, K. C. 1987 On the singular limit for a class of problems modelling phase transitions. SIAM J. Math. Anal. 18, 14531462.Google Scholar
[BF]Berger, M. S. & Fraenkel, L. E. 1970 On the asymptotic solution of a nonlinear Dirichlet problem. J. Math. Mech. 19, 553585.Google Scholar
[BH]Bronsard, L. & Hilhorst, D. 1992 On the slow dynamics for the Cahn–Hilliard equation in one space dimension. Proc. Roy. Soc. Lond. A 439, 669682.Google Scholar
[BK1]Bronsard, L. & Kohn, R. V. 1989 On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl. Math. 43, 983993.CrossRefGoogle Scholar
[BK2]Bronsard, L. & Kohn, R. V. 1990 Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics. J. Diff. Eq. 90, 211237.Google Scholar
[CGS]Carr, J., Gurtin, M. E. & Slemrod, M. 1984 Structured phase transitions on a finite interval. Arch. Rat. Mech. Anal. 86, 317351.Google Scholar
[CP]Carr, J. & Pego, R. C. 1989 Metastable pattern in solutions of ut3-f(u). Comm. Pure Appl. Math. 42, 528577.CrossRefGoogle Scholar
[C]Cahn, J. W. 1961 On spinodal decomposition. Ada Metall. 9, 795801.CrossRefGoogle Scholar
[CH]Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258267.Google Scholar
[Ec]Eckhaus, W. 1979 Asymptotic Analysis of Singular Perturbation. North-Holland.Google Scholar
[El]Elliott, C. M. 1989 The Cahn–Hilliard model for the kinetics of phase separation. Mathematical models for phase change problems. Proc. Eur. Workshop, Obidos/Port 1988, Int. Ser. Numer. Math. 88, 3573.Google Scholar
[EZ]Elliott, C. M. & Zheng, S. 1986 On the Cahn–Hilliard equation. Arch. Rat. Mech. Anal. 96, 339357.Google Scholar
[Fl]Fife, P. C. 1991 Models for phase separation and their mathematics. In Nonl. PDE and Appl. (Mimura, M. & Nishida, T., eds.), KTK Publication, Tokyo.Google Scholar
[F2]Fife, P. C. 1989 Pattern dynamics for parabolic PDE's. 'Introduction to Dynamical Systems', Proc. Workshop at IMA (Golubitsky, M. & Mehther, R., eds.). Springer-Verlag.Google Scholar
[FH]Fusco, G. & Hale, J. K. 1989 Slow motion manifolds, dormant instability and singular perturbations. Dyn. Diff. Eq. 1, 7594.CrossRefGoogle Scholar
[G]Gurtin, M. E. 1987 Some results and conjectures in the gradient theory of phase transitions. IMA Vol. Math. Appl. 3, ‘Metastability and Incompletely posed problems’ (Antman, S. S., Ericksen, J., Kinderlehrer, D. & Müller, I., eds.). Springer-Verlag, 135146.Google Scholar
[GM]Gurtin, M. E. & Matano, H. 1988 On the structure of equilibrium phase transitions within the gradient theory of fluids. Quart. Appl. Math. 46, 301317.CrossRefGoogle Scholar
[KSte]Kohn, R. V. & Sternberg, P. 1989 Local minimizers and singular perturbations. Proc. Roy. Soc. Edinburgh, 111A, 6984.Google Scholar
[LM]Luckhaus, S. & Modica, L. 1989 The Gibbs–Thompson relation within the gradient theory of phase transitions. Arch. Rat. Mech. Anal. 107, 7183.CrossRefGoogle Scholar
[Mo]Modica, L. 1987 The gradient theory of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal. 98, 123142.CrossRefGoogle Scholar
[MS]De Mottoni, P. & Schatzman, M. 1989 Evolution geometrique d'interface. Comp. Rend. Paris 309, 453458.Google Scholar
[Mu]Müller, S. 1989 Minimizing sequences for nonconvex functionals, phase transitions and singular perturbations. Proc. Problems involving change of type (Kirchgässner, K., ed.). Lecture Notes Physics 359, Springer-Verlag, 3144.CrossRefGoogle Scholar
[N]Niethammer, B. S. 1992 Diplomarbeit, Universität Bonn.Google Scholar
[P]Pego, R. L. 1989 Front migration in the nonlinear Cahn–Hilliard equation. Proc. Roy. Soc. Lond. A 422, 261278.Google Scholar
[RSK1]Rubinstein, J., Sternberg, P. & Keller, J. B. 1989 Fast reaction, slow diffusion and curve shortening. SIAM J. Appl. Math. 49, 116133.Google Scholar
[RSK2]Rubinstein, J., Sternberg, P. & Keller, J. B. 1989 Reaction diffusion processes and evolution to harmonic maps. SIAM J. Appl. Math. 49, 17221733.Google Scholar
[Ste]Sternberg, P. 1988 The effect of a singular perturbation on nonconvex variational problems. Arch. Rat. Mech. Anal. 101, 209260.Google Scholar
[Stol]Stoth, B. E. E. 1991 Unpublished note.Google Scholar
[Sto2]Stoth, B. E. E. 1992 The Stefan-problem coupled with the Gibbs-Thomson–law as singular limit of the phase-field equations in the radial case. Bonn, SFB256-report 246.Google Scholar
[Sto3]Stoth, B. E. E. 1993 Convergence of the Cahn–Hilliard equation to the Mullins–Sekerka problem in radial symmetry. Bonn, SFB-report.Google Scholar
[Ze]Zeidler, E. 1984 Nonlinear Functional Analysis and its Applications, Part 1. Springer-Verlag.Google Scholar
[Zh]Zheng, S. 1986 On the asymptotic behavior of solutions to the Cahn–Hilliard equation. Appl. Anal. 23, 165184.Google Scholar