Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T18:15:53.801Z Has data issue: false hasContentIssue false

Extinction, stable pattern and their transition in a diffusive single species population with distributed maturity

Published online by Cambridge University Press:  01 June 2008

PEIXUAN WENG*
Affiliation:
School of Mathematics, South China Normal University, Guangzhou 510631, P.R. China email: wengpx@scnu.edu.cn

Abstract

We consider a single-species structured population with distributed maturity and spatial diffusion in a cylindrical domain subject to Neumann and Robin boundary conditions. We first establish the threshold property of the reaction–diffusion system with distributed delay and non-local interaction in a corresponding lower-dimensional domain, so that the system approaches either an extinction state or a stable spatially varying pattern. We then investigate the transition from the extinction state to the stable pattern of the system in the cylindrical domain.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Al-Omari, J. F. M. & Gourley, S. A. (2005) A non-local reaction–diffusion model for a single species with stage structure and distributed maturation delay. Euro. J. Appl. Math. 16, 3751.CrossRefGoogle Scholar
[2]Aronson, D. G. & Weinberger, H. F. (1975) Non-linear diffusion in population genetics, combustion, and nerve pulse propagation. In: ed. Goldstein, J. A.Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, vol. 446, Springer-Verlag, New York, pp. 549.CrossRefGoogle Scholar
[3]Britton, N. F. (1990) Spacial structures and periodic travelling waves in an integro-differential reaction–diffusion population model. SIAM J. Appl. Math. 50, 16631688.CrossRefGoogle Scholar
[4]Cross, M. & Hohenberg, P. C. (1993) Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
[5]Diekmann, O. (1979) Run for your life, A note on the asymptotic speed of propagation of an epidemic. J. Diff. Eqns. 33, 5873.CrossRefGoogle Scholar
[6]Field, R. J. & Burger, M. (1985) Oscillations and Traveling Waves in Chemical Systems, Wiley Interscience, New York.Google Scholar
[7]Garroni, M. G. & Menaldi, J. L. (1992) Green Functions for Second Order Parobolic Integro-differential Problems, Longman Scientific & Technical, New York.Google Scholar
[8]Gourley, S. A. (2000) Travelling front solutions of a non-local Fisher equation. J. Math. Biol. 41, 272284.CrossRefGoogle Scholar
[9]Gourley, S. A. & Britton, N. F. (1996) Apredator–prey reaction–diffusion system with non-local effects. J. Math. Biol. 34, 297333.CrossRefGoogle Scholar
[10]Gourley, S. A. & Wu, J. H. (2006) Delayed non-local diffusion systems in biological invasion and disease spread. In Nonlinear Dynamics and Evolution Equations (Hermann Brunner, Xiao-qiang Zhao & Xinfu Zou eds), Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 137–200.Google Scholar
[11]Hale, J. K. & Lunel, S. M. V. (1993) Introduction to Functional Differential Equations, Springer-Verlag, New York, 9091.CrossRefGoogle Scholar
[12]Liang, X. & Zhao, X.-Q. (2007) Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 140.CrossRefGoogle Scholar
[13]Liang, X. & Zhao, X.-Q. (2008) Erratum: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 61, 137138.CrossRefGoogle Scholar
[14]Lui, R. (1989) Biological growth and spread modeled by systems of recursions. I & II. Math. Biosci. 93, 269312.CrossRefGoogle ScholarPubMed
[15]Lunardi, A. (1995) Analytic Semigroups and Regularity in Parabolic Problems, Birkhauser, Basel-Boston-Berlin.Google Scholar
[16]Martin, R. H. & Smith, H. L. (1990) Abstract functional differential equations and reaction–diffusion systems. Trans. Amer. Math. Soc. 321, 144.Google Scholar
[17]Merzhanov, A. G. & Rumanov, E. N. (1999) Physics of reaction waves. Rev. Mod. Phys. 71, 11731210.CrossRefGoogle Scholar
[18]Muratov, C. B. (2004) A global variational structure and propagation of disturbances in reaction–diffusion systems of gradient type. Discrete Cont. Dyn. Syst. Ser. B, 4, 867892.Google Scholar
[19]Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag. New York.CrossRefGoogle Scholar
[20]Protter, M. H. & Weinberger, H. F. (1967) Maximum Principles in Differential Equation, Prentice Hall, New Jersey.Google Scholar
[21]Schaaf, K. W. (1987) Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans. Amer. Math. Soc. 302, 587615.Google Scholar
[22]Smith, H. L. (1995) Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr. 41, Providence: American Mathematical Society.Google Scholar
[23]Smith, H. L. & Zhao, X.-Q. (2000) Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31, 514534.CrossRefGoogle Scholar
[24]So, J. W.-H., Wu, J. H., & Zou, X. F. (2001) A reaction–diffusion model for a single species with age atructure. I traveling wavefronts on the unbounded domains. Proc. R. Soc. London A 457, 18411853.CrossRefGoogle Scholar
[25]Thieme, H. R. (1979) Asymptotic estimates of the solutions of non-linear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306, 94121.Google Scholar
[26]Thieme, H. R. & Zhao, X.-Q. (2001) A non-local delayed and diffusive predator-prey model. Non-Linear Anal. Real World Appl. 2, 145160.CrossRefGoogle Scholar
[27]Thieme, H. R. & Zhao, X.-Q. (2003) Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. J. Diff. Eq. 195, 430470.CrossRefGoogle Scholar
[28]Weinberger, H. F. (1982) Long-time behavior of a class of biological models. SIAM, J. Math. Anal. 13, 353396.CrossRefGoogle Scholar
[29]Weinberger, H. F. (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511548.CrossRefGoogle Scholar
[30]Weinberger, H. F., Lewis, M. A. & Li, B. (2002) Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183218.CrossRefGoogle ScholarPubMed
[31]Weng, P. X., & Zhao, X.-Q. (2006) Spreading speed and traveling waves for a mulyi-type SIS epidemic model. J. Diff. Eq. 229, 270296.CrossRefGoogle Scholar
[32]Weng, P. X., Huang, H. X. & Wu, J. H. (2003) Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction. IMA J. Appl. Math. 68, 409439.CrossRefGoogle Scholar
[33]Wu, J. H. (1996) Theory and Applications of Partial Functional Differential Equations, Springer–Verlag. New York.CrossRefGoogle Scholar
[34]Wu, J. H. & Zou, X. F. (2001) Traveling wave fronts of reaction–diffusion systems with delay. J. Dyn. Diff. Eq. 13, 651687.CrossRefGoogle Scholar
[35]Xu, D. S. & Zhao, X.-Q. (2003) A non-local reaction-diifusion population model with age stage structure. Canadian J. Appl. Math. Q. 11, 303320.Google Scholar
[36]Zhao, X.-Q. (1996) Global attractivity and stability in some monotone discrete synamical systems. Bull. Austral. Math. Soc. 53, 305324.CrossRefGoogle Scholar
[37]Zhao, X.-Q. (2003) Dynamical Systems in Population Biology, Springer–Verlag. New York.CrossRefGoogle Scholar