Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T04:49:34.070Z Has data issue: false hasContentIssue false

Fragmentation of biofilm-seeded bacterial aggregates in shear flow

Published online by Cambridge University Press:  20 February 2018

E. P. KIGHTLEY
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA emails: Eric.Kightley@colorado.edu, Antony.Pearson@colorado.edu, dmbortz@colorado.edu Interdisciplinary Quantitative Biology Graduate Program, University of Colorado, Boulder, CO 80309-596, USA
A. PEARSON
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA emails: Eric.Kightley@colorado.edu, Antony.Pearson@colorado.edu, dmbortz@colorado.edu Interdisciplinary Quantitative Biology Graduate Program, University of Colorado, Boulder, CO 80309-596, USA
J. A. EVANS
Affiliation:
Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80309-0429, USA email: john.a.evans@colorado.edu
D. M. BORTZ
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA emails: Eric.Kightley@colorado.edu, Antony.Pearson@colorado.edu, dmbortz@colorado.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a model for the force acting to fragment a biofilm-seeded microbial aggregate in shear flow, which we derive by coupling an existing model for the shape and orientation of a deforming ellipsoid with one for the surface force density on a solid ellipsoid. The model can be used to simulate the motion, shape, surface force density, and breakage of colloidal aggregates in shear flow. We apply the model to the case of exhaustive fragmentation of microbial aggregates in order to compute a post-fragmentation density function, indicating the likelihood of a fragmenting aggregate yielding daughter aggregates of a certain size.

Type
Papers
Copyright
Copyright © Cambridge University Press 2018 

Footnotes

EPK is supported by the Interdisciplinary Quantitative Biology Program at the BioFrontiers Institute, University of Colorado Boulder (NSF IGERT 1144807) and by an NSF GRFP (DGE 1144083). This work was supported in part by grant NSF-DMS 1225878 to DMB.

References

[1] Blaser, S. (2000) Break-up of flocs in contraction and swirling flows. Colloids Surf. Physicochem. Eng. Asp. 166 (1–3), 215223.Google Scholar
[2] Blaser, S. (2000) Flocs in shear and strain flows. J. Colloid Interface Sci. 225 (2), 273284.Google Scholar
[3] Blaser, S. (2002) Forces on the surface of small ellipsoidal particles immersed in a linear flow field. Chem. Eng. Sci. 57 (3), 515526.Google Scholar
[4] Bortz, D. M., Jackson, T. L., Taylor, K. A., Thompson, A. P. & Younger, J. G. (2008) Klebsiella pneumoniae flocculation dynamics. Bull. Math. Biol. 70 (3), 745768.Google Scholar
[5] Bratby, J. (2008) Coagulation and Flocculation in Water and Wastewater Treatment, 2nd ed., International Water Association, Seattle, WA.Google Scholar
[6] Byrne, E., Dzul, S., Solomon, M., Younger, J. & Bortz, D. M. (2011) Postfragmentation density function for bacterial aggregates in laminar flow. Phys. Rev. E 83 (4), 041911.Google Scholar
[7] Gaboriaud, F., Gee, M. L., Strugnell, R. & Duval, J. F. L. (2008) Coupled electrostatic, hydrodynamic, and mechanical properties of acterial interfaces in aqueous media. Langmuir 24 (19), 1098810995.Google Scholar
[8] Hammond, J. F., Stewart, E., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2014) Variable viscosity and density biofilm simulations using an immersed boundary method, Part I: Numerical scheme and convergence results. Comput. Model. Eng. Sci. 98 (3), 295340.Google Scholar
[9] Jackson, N. E. & Tucker, C. L. III (2003) A model for large deformation of an ellipsoidal droplet with interfacial tension. J. Rheol. 47 (3), 659682.Google Scholar
[10] James, D., Yogachandran, N., Loewen, M., Liu, H. & Davis, A. (2003) Floc rupture in extensional flow. J. Pulp Pap. Sci. 29 (11), 377383.Google Scholar
[11] Kléman, M. & Lavrentovich, O. D. (2003) Soft Matter Physics: An Introduction, Springer, New York.Google Scholar
[12] Kobayashi, M. (2004) Breakup and strength of polystyrene latex flocs subjected to a converging flow. Colloids Surf. Physicochem. Eng. Asp. 235 (1–3), 7378.Google Scholar
[13] Kobayashi, M. (2005) Strength of natural soil flocs. Water Res. 39 (14), 32733278.Google Scholar
[14] Liss, S. N., Droppo, I. G., Leppard, G. G. & Milligan, T. G. (editors) (2007) Flocculation in Natural and Engineered Environmental Systems, CRC Press, Boca Raton, FL.Google Scholar
[15] Mirzaev, I. & Bortz, D. M. (2015) Criteria for linearized stability for a size-structured population model. arXiv : 1502.02754.Google Scholar
[16] Mirzaev, I. & Bortz, D. M. (2017) A numerical framework for computing steady states of structured population models and their stability. Math. Biosci. Eng. 14 (4), 933952.Google Scholar
[17] Mirzaev, I., Byrne, E. C. & Bortz, D. M. (2016) An inverse problem for a class of conditional probability measure-dependent evolution equations. Inverse Probl. 32 (9), 095005.Google Scholar
[18] Nopens, I. (2005) Modelling the Activated Sludge Flocculation Process: A Population Balance Approach. PhD, Universiteit Gent.Google Scholar
[19] Rueb, C. J. & Zukoski, C. F. (1997) Viscoelastic properties of colloidal gels. J. Rheol. 41 (2), 197218.Google Scholar
[20] Solsvik, J., Tangen, S. & Jakobsen, H. A. (2013) On the constitutive equations for fluid particle breakage. Rev Chem. Eng. 29 (5), 241356.Google Scholar
[21] Stotsky, J. A., Hammond, J. F., Pavlovsky, L. Stewart, E. J., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2016) Variable viscosity and density biofilm simulations using an immersed boundary method, Part II: Experimental validation and the heterogeneous rheology-IBM. J. Comput. Phys. 316, 204222.Google Scholar
[22] Wetzel, E. D. & Tucker, C. L. III (2001) Droplet deformation in dispersions with unequal viscosities and zero interfacial tension. J. Fluid Mech. 426, 199228.Google Scholar
[23] Yarin, A., Gottlieb, O. & Roisman, I. (1997) Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83100.Google Scholar