Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:09:41.141Z Has data issue: false hasContentIssue false

Free surface flow past topography: A beyond-all-orders approach

Published online by Cambridge University Press:  09 February 2012

CHRISTOPHER J. LUSTRI
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK
SCOTT W. MCCUE
Affiliation:
School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4101, Australia email: scott.mccue@qut.edu.au
BENJAMIN J. BINDER
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia

Abstract

The problem of steady subcritical free surface flow past a submerged inclined step is considered. The asymptotic limit of small Froude number is treated, with particular emphasis on the effect that changing the angle of the step face has on the surface waves. As demonstrated by Chapman & Vanden-Broeck, (2006) Exponential asymptotics and gravity waves. J. Fluid Mech.567, 299–326, the divergence of a power series expansion in powers of the square of the Froude number is caused by singularities in the analytic continuation of the free surface; for an inclined step, these singularities may correspond to either the corners or stagnation points of the step, or both, depending on the angle of inclination. Stokes lines emanate from these singularities, and exponentially small waves are switched on at the point the Stokes lines intersect with the free surface. Our results suggest that for a certain range of step angles, two wavetrains are switched on, but the exponentially subdominant one is switched on first, leading to an intermediate wavetrain not previously noted. We extend these ideas to the problem of flow over a submerged bump or trench, again with inclined sides. This time there may be two, three or four active Stokes lines, depending on the inclination angles. We demonstrate how to construct a base topography such that wave contributions from separate Stokes lines are of equal magnitude but opposite phase, thus cancelling out. Our asymptotic results are complemented by numerical solutions to the fully nonlinear equations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Berry, M. V. (1991) Asymptotics, superasymptotics, hyperasymptotics. In: Segur, H., Tanveer, S. & Levine, H. (editors), Asymptotics Beyond All Orders, Plenum, Amsterdam, pp. 114.Google Scholar
[2]Binder, B. J. (2010) Steady free-surface flow at the stern of a ship. Phys. Fluids, 22, 012104.CrossRefGoogle Scholar
[3]Binder, B. J., Dias, F. & Vanden-Broeck, J.-M. (2007) Influence of rapid changes in a channel bottom on free-surface flows. IMA J. Appl. Math. 73, 120.Google Scholar
[4]Binder, B. J., Vanden-Broeck, J.-M. & Dias, F. (2005) Forced solitary waves and fronts past submerged obstacles. Chaos 15, 037106.CrossRefGoogle ScholarPubMed
[5]Body, G. L., King, J. R. & Tew, R. H. (2005) Exponential asymptotics of a fifth-order differential equation. Euro. J. Appl. Math. 16, 647681.CrossRefGoogle Scholar
[6]Brower, R. C., Kessler, D. A., Koplik, J. & Levine, H. (1983) Geometrical approach to moving-interface dynamics. Phys. Rev. Lett. 51, 11111114.CrossRefGoogle Scholar
[7]Chapman, S. J. (1999) On the rôle of Stokes lines in the selection of Saffman-Taylor fingers with small surface tension. Euro. J. Appl. Math. 10, 513534.CrossRefGoogle Scholar
[8]Chapman, S. J. & King, J. R. (2003) The selection of Saffman-Taylor fingers by kinetic undercooling. J. Eng. Math. 46, 132.CrossRefGoogle Scholar
[9]Chapman, S. J., King, J. R. & Adams, K. L. (1998) Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations. Proc. Roy. Soc. Lond. A 454, 27332755.CrossRefGoogle Scholar
[10]Chapman, S. J. & Mortimer, D. B. (2005) Exponential asymptotics and Stokes lines in a partial differential equation. Proc. Roy. Soc. Lond. A 461, 23852421.Google Scholar
[11]Chapman, S. J. & Vanden-Broeck, J.-M. (2002) Exponential asymptotics and capillary waves. SIAM J. Appl. Math. 62, 18721898.Google Scholar
[12]Chapman, S. J. & Vanden-Broeck, J.-M. (2006) Exponential asymptotics and gravity waves. J. Fluid Mech. 567, 299326.CrossRefGoogle Scholar
[13]Dagan, G. (1975) Waves and wave resistance of thin bodies moving at low speed: The free-surface nonlinear effect. J. Fluid Mech. 69, 405416.Google Scholar
[14]Dingle, R. B. (1973) Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, New York.Google Scholar
[15]Doctors, L. J. & Dagan, G. (1980) Comparison of nonlinear wave-resistance theories for a two-dimensional pressure distribution. J. Fluid Mech. 98, 647672.Google Scholar
[16]Forbes, L. K. (1982) Non-linear, drag-free flow over a submerged semi-elliptical body. J. Eng. Math. 16, 171180.Google Scholar
[17]Forbes, L. K. (1988) Critical free-surface flow over a semi-circular obstruction. J. Eng. Math. 22, 313.Google Scholar
[18]Forbes, L. K. & Schwartz, L. W. (1982) Free-surface flow over a semicircular obstruction. J. Fluid Mech. 114, 299314.CrossRefGoogle Scholar
[19]Gazdar, A. S. (1973) Generation of waves of small amplitude by an obstacle placed on the bottom of a running stream. J. Phys. Soc. Japan 34, 530.Google Scholar
[20]Hocking, G. C. & Forbes, L. K. (1992) Subcritical free-surface flow caused by a line source in a fluid of finite depth. J. Eng. Math. 26, 455466.CrossRefGoogle Scholar
[21]Howls, C. J., Langman, P. J. & Olde Daalhuis, A. B. (2004) On the higher-order Stokes phenomenon. Proc. Roy. Soc. Lond. A 460, 22852303.Google Scholar
[22]King, A. C. & Bloor, M. I. G. (1987) Free-surface flow over a step. J. Fluid Mech. 182, 193208.CrossRefGoogle Scholar
[23]King, A. C. & Bloor, M. I. G. (1990) Free-surface flow of a stream obstructed by an arbitrary bed topography. Q. J. Mech. Appl. Math. 43, 87106.Google Scholar
[24]Kruskal, M. D. & Segur, H. (1991) Asymptotics beyond all orders in a model of crystal growth. Stud. Appl. Math. 36, 129181.Google Scholar
[25]Lamb, H. (1932) Hydrodynamics. Cambridge University Press.Google Scholar
[26]Maleewong, M. & Grimshaw, R. H. J. (2008) Nonlinear free surface flows past a semi-infinite flat plate in water of finite depth. Phys. Fluids 20, 062102.CrossRefGoogle Scholar
[27]McCue, S. W. & Forbes, L. K. (1999) Bow and stern flows with constant vorticity. J. Fluid Mech. 399, 277300.CrossRefGoogle Scholar
[28]McCue, S. W. & Forbes, L. K. (2002) Free-surface flows emerging from beneath a semi-infinite plate with constant vorticity. J. Fluid Mech. 461, 387407.Google Scholar
[29]McCue, S. W. & Stump, D. M. (2000) Linear stern waves in finite depth channels. Q. J. Mech. Appl. Math. 53, 629643.CrossRefGoogle Scholar
[30]Mekias, H. & Vanden-Broeck, J.-M. (1991) Subcritical flow with a stagnation point due to a source beneath a free surface. Phys. Fluids A 3, 26522658.CrossRefGoogle Scholar
[31]Ogilat, O., McCue, S. W., Turner, I. W., Belward, J. A. & Binder, B. J. (2011) Minimising wave drag for free surface flow past a two-dimensional stern. Phys. Fluids 23, 072101.Google Scholar
[32]Ogilvie, T. F. (1968) Wave Resistance. The Low Speed Limit. Technical Report, Michigan University, Ann Arbor, MI.Google Scholar
[33]Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. & Tew, R. H. (1995) Stokes phenomenon and matched asymptotic expansions. SIAM J. Appl. Math. 55, 14691483.Google Scholar
[34]Scullen, D. & Tuck, E. O. (1995) Nonlinear free-surface flow computations for submerged cylinders. J. Ship Res. 39, 185193.Google Scholar
[35]Trinh, P. H., Chapman, S. J., & Vanden-Broeck, J.-M. (2011) Do waveless ships exist? Results for single-cornered hulls. J. Fluid Mech. 685, 413439.Google Scholar
[36]Tuck, E. O. & Scullen, D. C. (1998) Tandem submerged cylinders each subject to zero drag. J. Fluid Mech. 364, 211220.CrossRefGoogle Scholar
[37]Vanden-Broeck, J.-M. (1980) Nonlinear stern waves. J. Fluid Mech. 96, 603611.Google Scholar
[38]Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. (1978) Divergent low-Froude-number series expansion of nonlinear free-surface flow problems. Proc. R. Soc. Lond. A 361, 207224.Google Scholar
[39]Vanden-Broeck, J.-M. & Tuck, E. O. (1977) Computation of near-bow or stern flows using series expansion in the Froude number. In: 2nd International Conference on Numerical Ship Hydrodynamics, University of California, Berkeley, CA.Google Scholar
[40]Vanden-Broeck, J.-M. & Tuck, E. O. (1985) Waveless free-surface pressure distributions. J. Ship Res. 29, 151158.CrossRefGoogle Scholar
[41]Wehausen, J. V. & Laitone, E. V. (1960) Surface waves. In: Handbuch der Physik, Springer, pp. 446778.Google Scholar
[42]Zhang, Y. & Zhu, S. (1996) A comparison of nonlinear waves generated behind a semicircular trench. Proc. Roy. Soc. Lond. A 452, 15631584.Google Scholar
[43]Zhang, Y. & Zhu, S. (1996) Open channel flow past a bottom obstruction. J. Eng. Math. 30, 487499.CrossRefGoogle Scholar