Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:51:42.735Z Has data issue: false hasContentIssue false

A general construction of fractal interpolation functions on grids of n

Published online by Cambridge University Press:  01 August 2007

P. BOUBOULIS
Affiliation:
Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis 157 84, Athens, Greece email: bouboulis@di.uoa.gr
L. DALLA
Affiliation:
Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece email: ldalla@math.uoa.gr

Abstract

We generalise the notion of fractal interpolation functions (FIFs) to allow data sets of the form where I=[0,1]n. We introduce recurrent iterated function systems whose attractors G are graphs of continuous functions f:I, which interpolate the data. We show that the proposed constructions generalise the previously existed ones on . We also present some relations between FIFs and the Laplace partial differential equation with Dirichlet boundary conditions. Finally, the fractal dimensions of a class of FIFs are derived and some methods for the construction of functions of class Cp using recurrent iterated function systems are presented.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barnsley, M. F. (1986) Fractal functions and interpolation. Constr. Approx. 2, 303329.CrossRefGoogle Scholar
[2]Barnsley, M. F. (1993) Fractals Everywhere, 2nd ed., Academic Press Professional, San Diego, CA.Google Scholar
[3]Barnsley, M. F., Elton, J. H. & Hardin, D. P. (1989) Recurrent iterated function systems. Constr. Approx. 5, 331.CrossRefGoogle Scholar
[4]Barnsley, B. F., Elton, J., Hardin, D. & Massopust, P. (1989) Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20, 12181242.CrossRefGoogle Scholar
[5]Barnsley, B. F. & Harrington, A. N. (1989) The calculus of fractal interpolation functions. J. Approx. Theory 57, 1443.CrossRefGoogle Scholar
[6]Bouboulis, P., Dalla, L. & Drakopoulos, V. (2006) Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension. J. Approx. Theory 141, 99117.CrossRefGoogle Scholar
[7]Chand, A. K. B. & Kapoor, G. P. (2006) Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44 (2), 655676.CrossRefGoogle Scholar
[8]Dalla, L. (2002) Bivariate fractal interpolation functions on grids. Fractals 10 (1), 5358.CrossRefGoogle Scholar
[9]Dalla, L., Drakopoulos, V. & Prodromou, M. (2003) On the box dimension for a class of nonaffine fractal interpolation functions. Anal. Theory Appl. 19 (3), 220233.CrossRefGoogle Scholar
[10]Donovan, G. C., Geronimo, J. S., Hardin, D. P. & Massopust, P. R. (1996) Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal. 27, 11581192.CrossRefGoogle Scholar
[11]Dudley, R. M. (1989) Real Analysis and Probability, Cambridge University Press, 2002, Wadsworth, Pacific Grove, CA.Google Scholar
[12]Geronimo, J. S. & Hardin, D. (1993) Fractal interpolation surfaces and a related 2D multiresolutional analysis. J. Math. Anal. Appl. 176, 561586.CrossRefGoogle Scholar
[13]Geronimo, J. S., Hardin, D. & Massopust, P. (1994) Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78, 373401.CrossRefGoogle Scholar
[14]Hardin, D. P. & Massopust, P. R. (1986) The capacity of a class of fractal functions. Math. Phys. 105, 455460.CrossRefGoogle Scholar
[15]Hardin, D., Kessler, B. & Massopust, P. (1992) Multiresolution analyses based on fractal functions. J. Approx. Theory 71, 104120.CrossRefGoogle Scholar
[16]Malysz, R. (2006) The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos Solitons Fractals 27 (5), 11471156.CrossRefGoogle Scholar
[17]Massopust, P. R. (1994) Fractal Functions, Fractal Surfaces and Wavelets, Academic Press, New York.Google Scholar
[18]Mazel, D. S. & Hayes, M. H. (1992) Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 40, 17241734.CrossRefGoogle Scholar
[19]Navascues, M. A. & Sebastian, M. V. (2004) Generalization of Hermite functions by fractal interpolation. J. Approx. Theory 131, 1929.CrossRefGoogle Scholar
[20]Navascues, M. A. & Sebastian, M. V. (2006) Smooth fractal interpolation. J. Inequal. Appl.Google Scholar
[21]Navascues, M. A. (2005) Fractal trigonometric approximation. ETNA 20, 6474.Google Scholar