Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T16:50:13.277Z Has data issue: false hasContentIssue false

A hydrodynamic model for silicon semiconductors including crystal heating

Published online by Cambridge University Press:  04 May 2015

GIOVANNI MASCALI*
Affiliation:
Dipartimento di Matematica ed Informatica, Università della Calabria and INFN-Gruppo c. Cosenza, 87036 Cosenza, Italy email: g.mascali@unical.it

Abstract

We present a macroscopic model for describing the electrical and thermal behaviour of silicon devices. The model makes use of a set of macroscopic state variables for phonons and electrons that are moments of their respective distribution functions. The evolution equations for these variables are obtained starting from the Bloch–Boltzmann–Peierls kinetic equations for the phonon and the electron distributions, and are closed by means of the maximum entropy principle. All the main interactions between electrons and phonons, the scattering of electrons with impurities, as well as the scattering of phonons among themselves are considered. In particular, we propose a treatment of the optical phonon decay directly based on the expression of its transition rate (Klemens 1966Phys. Rev.148 845; Aksamija & Ravaioli 2010Appl. Phys. Lett.96, 091911). As an application of the model, we evaluate the silicon thermopower.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alì, G., Mascali, G., Romano, V. & Torcasio, C. R. (2012) A hydrodynamical model for covalent semiconductors, with applications to GaN and SiC. Acta Appl. Math. 122 (1), 335.Google Scholar
[2]Alì, G., Mascali, G., Romano, V. & Torcasio, R. C. (2014) A hydrodynamic model for covalent semiconductors with a generalized energy dispersion relation. Euro. J. Appl. Math. 25 (2), 255.CrossRefGoogle Scholar
[3]Aksamija, Z. & Ravaioli, U. (2010) Anharmonic decay of g-process longitudinal optical phonons in silicon. Appl. Phys. Lett. 96, 091911.CrossRefGoogle Scholar
[4]Anile, A. M., Marrocco, A., Romano, V. & Sellier, J. M. (2005) 2D Numerical simulation of MEP energy-transport model with a mixed finite elements scheme. J. Comput. Electron. 4, 231.CrossRefGoogle Scholar
[5]Ashcroft, N. W. & Mermin, N. D. (1976) Solid State Physics, Holt, Rineheart and Winston, New York.Google Scholar
[6]Auer, C., Schürrer, F. & Koller, W. (2004) A semicontinuous formulation of the Bloch-Boltzmann-Peierls equations. SIAM J. Appl. Math. 64, 1457.CrossRefGoogle Scholar
[7]Barletti, L., Frosali, G. & Morandi, O. (2014) Kinetic and hydrodynamic models for multi-band and quantum transport in crystals. Lect. Notes Comput. Sci., pp. 356, Springer, Berlin.Google Scholar
[8]Brunk, M. & Jüngel, A. (2011) Self-heating in a coupled thermo-electric circuit-device model. J. Comput. Electron. 10, 163.CrossRefGoogle Scholar
[9]Camiola, V. D., Mascali, G. & Romano, V. (2012) Numerical simulation of a double-gate Mosfet with a Subband model for semiconductors based on the maximum entropy principle. Contin. Mech. Thermodyn. 24 (4–6), 417.CrossRefGoogle Scholar
[10]Carrillo, J. A., Majorana, A. & Vecil, F. (2007) A semi-Lagrangian deterministic solver for the semiconductor Boltzmann-Poisson system. Commun. Comput. Phys. 2 (5), 1027.Google Scholar
[11]Debernardi, A., Baroni, S. & Molinari, E. (1995) Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75 (9), 1819.CrossRefGoogle ScholarPubMed
[12]Dreyer, W. J. (1987) Maximisation of the entropy in non-equilibrium. Phys. A: Math. Gen. 20, 6505.CrossRefGoogle Scholar
[13]Dreyer, W. & Struchtrup, H. (1993) Heat pulse experiment revisited. Contin. Mech. Thermodyn. 5, 3.CrossRefGoogle Scholar
[14]Ezzahri, Y. & Joulain, K. (2012) Dynamical thermal conductivity of bulk semiconductor crystals. J. Appl. Phys. 112 (8), 083515–1.CrossRefGoogle Scholar
[15]Jacoboni, C. (2010) Theory of Electron Transport in Semiconductord, A Pathway from elementary Physics to Nonequilibrium Green Functions, Springer, Heidelberg, Dordrecht, London, New York.CrossRefGoogle Scholar
[16]Jaynes, E. T. (1957) Information theory and statistcal mechnics. Phys. Rev. 106, 620.CrossRefGoogle Scholar
[17]Klemens, P. G. (1966) Anharmonic decay of optical phonons. Phys. Rev. 148, 845.CrossRefGoogle Scholar
[18]LichtenbergerMorandi, O. Morandi, O. & Schürrer, F. (2011) High-field transport and optical phonon scattering in graphene. Phys. Rev. B 84, 045406.CrossRefGoogle Scholar
[19]Martin, M. J., Gonzalez, T., Velazquez, J. E. & Pardo, D. (1993) Simulation of electron transport in silicon: Impact-ionization processes. Semicond. Sci. Technol. 8, 12911297.CrossRefGoogle Scholar
[20]Mascali, G. (2002) Maximum entropy principle in relativistic radiation hydrodynamics II: Compton and double Compton scattering. Contin. Mech. Thermodyn. 14 (6), 549.CrossRefGoogle Scholar
[21]Mascali, G. & Romano, V. (2011) A hydrodynamical model for holes in silicon semiconductors: The case of non-parabolic warped bands. Math. Comput. Modelling 53 (1–2), 213.CrossRefGoogle Scholar
[22]Morelli, D. T. & Heremans, J. P. (2002) Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-IV semiconductors. Phys. Rev. B 66, 195304.CrossRefGoogle Scholar
[23]Müller, I. & Ruggeri, T. (1998) Rational Extended Thermodynamics, Springer, New York, Berlin Heidelberg.CrossRefGoogle Scholar
[24]Muscato, O. & Di Stefano, V. (2011) An energy transport model describing heat generation and conduction in silicon semiconductors. J. Stat. Phys. 144 (1), 171.CrossRefGoogle Scholar
[25]Muscato, O. & Di Stefano, V. (2011) Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A-Math. Theor. 44, 105501.CrossRefGoogle Scholar
[26]Muscato, O. & Di Stefano, V. (2011) Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors. J. Appl. Phys. 110, 093706.CrossRefGoogle Scholar
[27]Pop, E., Dutton, R.W. & Goodson, K. E. (2004) Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96, 4998.CrossRefGoogle Scholar
[28]Romano, V. & Zwierz, M. (2010) Electron-phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 61, 1111.CrossRefGoogle Scholar
[29]Rowlette, J. A. & Goodson, K. E. (2008) Fully coupled non-equilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron. Dev. 55 (1), 220.CrossRefGoogle Scholar
[30]Sharma, D. K. & Ramanthan, K. V. (1983) Modeling thermal effetcs on MOS I-V characteristics. IEEE Electr. Device Lett. EDL–4, 362.CrossRefGoogle Scholar
[31]Struchtrup, H. (1997) An extended moment method in radiative transfer: The matrices of mean absorption and scattering coefficients. Ann. Phys. 257, 111.CrossRefGoogle Scholar
[32]Wachutka, G. W. (1990) Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aid. D. 9 (II), 1141.CrossRefGoogle Scholar
[33]Weber, L. & Gmelin, E. (1991) Tranport properties of Silicon. Appl. Phys. A 53, 136.CrossRefGoogle Scholar