1. Introduction
 Intraguild predation (IGP) is ubiquitous in the natural environment, and it describes an interaction in which two or more species compete for shared resources and consume each other. Typically, prey promotes the growth of predator density due to the consumption of prey by predators. However, the impact of prey on predators resulting from competition for the same resource is rarely considered in some existing literature, see Refs. [Reference Chen and Wu7, Reference Du, Niu and Wei11, Reference Huang, Shi and Wei16, Reference Olivares, Figueroa and Palma28]. As a consequence, there is interest in studying the dynamics of the predator–prey model with IG prey and IG predators. In fact, some scholars have devoted great attention to the dynamics of IGP-type predator–prey models. Ji et al. [Reference Ji, Lin and Wang19] investigated the well-posedness, properties of the solution semiflow, and spatiotemporal dynamics of a three-dimensional IGP-type predator–prey model with homogeneous Neumann boundary conditions. By employing a delayed IGP model, Shu et al. [Reference Shu, Hu, Wang and Watmough34] demonstrated that delays could induce the stability switch, multitype bistability, and chaos phenomena. Bl
 $\acute {\textrm {e}}$
 et al. [Reference Bl´e, Castellanos and Hernandez4] reported on the Hopf and Bautin bifurcations of an intraguild predation model with general functional responses for the predators and a significantly growing rate functions for the prey. The longtime behavior of solutions, the existence of biologically meaningful equilibria, and the linear and nonlinear stability of equilibria in an intraguild predator–prey model with a Holling type II functional response were investigated by Capone et al. in [Reference Capone, Carfora, De Luca and Torcicollo5]. Please refer to Refs. [Reference Ingeman and Novak18, Reference Raw and Tiwari29, Reference Sen, Ghorai and Banerjee30, Reference Shchekinova, Loder and Boersma31] for more experimental and theoretical results regarding IGP-type predator–prey models.
$\acute {\textrm {e}}$
 et al. [Reference Bl´e, Castellanos and Hernandez4] reported on the Hopf and Bautin bifurcations of an intraguild predation model with general functional responses for the predators and a significantly growing rate functions for the prey. The longtime behavior of solutions, the existence of biologically meaningful equilibria, and the linear and nonlinear stability of equilibria in an intraguild predator–prey model with a Holling type II functional response were investigated by Capone et al. in [Reference Capone, Carfora, De Luca and Torcicollo5]. Please refer to Refs. [Reference Ingeman and Novak18, Reference Raw and Tiwari29, Reference Sen, Ghorai and Banerjee30, Reference Shchekinova, Loder and Boersma31] for more experimental and theoretical results regarding IGP-type predator–prey models.
In this paper, we investigate the following IGP-type predator–prey model incorporating prey-taxis and linear harvesting:
 \begin{align} \left \{ {\begin{array}{l@{\quad}l} \displaystyle \frac {\partial P}{\partial t}=d_1\Delta P-\nabla \cdot (\xi \phi (P)\nabla Q)+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right ),\ &x\in \Omega, \ t\gt 0,\\[6pt] \displaystyle \frac {\partial Q}{\partial t}=d_2\Delta Q+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ,\ &x\in \Omega, \ t\gt 0,\\[6pt] \displaystyle \frac {\partial P}{\partial \nu }=\frac {\partial Q}{\partial \nu }=0,\ &x\in \partial \Omega, \ t\geq 0,\\[6pt] P(x,0)=P_0(x)\geq 0,\ Q(x,0)=Q_{0}(x)\geq 0,\ &x\in \Omega, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{l@{\quad}l} \displaystyle \frac {\partial P}{\partial t}=d_1\Delta P-\nabla \cdot (\xi \phi (P)\nabla Q)+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right ),\ &x\in \Omega, \ t\gt 0,\\[6pt] \displaystyle \frac {\partial Q}{\partial t}=d_2\Delta Q+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ,\ &x\in \Omega, \ t\gt 0,\\[6pt] \displaystyle \frac {\partial P}{\partial \nu }=\frac {\partial Q}{\partial \nu }=0,\ &x\in \partial \Omega, \ t\geq 0,\\[6pt] P(x,0)=P_0(x)\geq 0,\ Q(x,0)=Q_{0}(x)\geq 0,\ &x\in \Omega, \end{array}} \right . \end{align}
where 
 $P=P(x,t)$
 and
$P=P(x,t)$
 and 
 $Q=Q(x,t)$
 are the densities of the IG predator and IG prey at spatial location
$Q=Q(x,t)$
 are the densities of the IG predator and IG prey at spatial location 
 $x$
 and time
$x$
 and time 
 $t$
, respectively. The domain
$t$
, respectively. The domain 
 $\Omega \subset \mathbb {R}^N$
 is a bounded region with
$\Omega \subset \mathbb {R}^N$
 is a bounded region with 
 $N\geq 1$
,
$N\geq 1$
, 
 $\nu$
 is the outward unit normal vector along the smooth
$\nu$
 is the outward unit normal vector along the smooth 
 $\partial \Omega$
, and
$\partial \Omega$
, and 
 $\Delta$
 is the Laplacian operator. The parameters
$\Delta$
 is the Laplacian operator. The parameters 
 $d_1$
 and
$d_1$
 and 
 $d_2$
 describe the movement speeds of the predator
$d_2$
 describe the movement speeds of the predator 
 $P$
 and prey
$P$
 and prey 
 $Q$
, respectively. The terms
$Q$
, respectively. The terms 
 $\frac {c}{cP+eQ}$
 and
$\frac {c}{cP+eQ}$
 and 
 $\frac {e}{cP+eQ}$
 represent the per capita share of resources accruing to the predator
$\frac {e}{cP+eQ}$
 represent the per capita share of resources accruing to the predator 
 $P$
 and prey
$P$
 and prey 
 $Q$
, respectively. The parameter
$Q$
, respectively. The parameter 
 $b$
 measures the consumption of the resources by predator and prey, while
$b$
 measures the consumption of the resources by predator and prey, while 
 $\alpha$
 and
$\alpha$
 and 
 $\beta$
 are the natural death rates of the predator
$\beta$
 are the natural death rates of the predator 
 $P$
 and prey
$P$
 and prey 
 $Q$
, respectively. The term
$Q$
, respectively. The term 
 $-hQ$
 explains the linear harvesting of the
$-hQ$
 explains the linear harvesting of the 
 $Q$
 species with the harvesting constant
$Q$
 species with the harvesting constant 
 $h$
. Furthermore, the term
$h$
. Furthermore, the term 
 $-\nabla \cdot (\xi \phi (P)\nabla Q)$
 represents the prey-taxis with the sensitivity coefficient
$-\nabla \cdot (\xi \phi (P)\nabla Q)$
 represents the prey-taxis with the sensitivity coefficient 
 $\xi$
. This means that the predator species
$\xi$
. This means that the predator species 
 $P$
 moves toward higher gradient directions of prey species
$P$
 moves toward higher gradient directions of prey species 
 $Q$
. The prey-taxis can be attractive or repulsive when
$Q$
. The prey-taxis can be attractive or repulsive when 
 $\xi \gt 0$
 or
$\xi \gt 0$
 or 
 $\xi \lt 0$
, respectively.
$\xi \lt 0$
, respectively. 
 $\phi (P)$
 is a density functions related to population
$\phi (P)$
 is a density functions related to population 
 $P$
. This density function can take different forms. For instance, linear form:
$P$
. This density function can take different forms. For instance, linear form: 
 $\phi (P)=P$
, saturated form:
$\phi (P)=P$
, saturated form: 
 $\phi (P)=\frac {P}{1+\epsilon P^m}$
 with
$\phi (P)=\frac {P}{1+\epsilon P^m}$
 with 
 $\epsilon \gt 0$
 and
$\epsilon \gt 0$
 and 
 $m\geq 1$
, Ricker form:
$m\geq 1$
, Ricker form: 
 $\phi (P)=Pe^{-\epsilon P}$
 with
$\phi (P)=Pe^{-\epsilon P}$
 with 
 $\epsilon \gt 0$
, monotonic non-increasing form:
$\epsilon \gt 0$
, monotonic non-increasing form: 
 $\phi (P)=\frac {1}{1+P}$
 (or
$\phi (P)=\frac {1}{1+P}$
 (or 
 $\phi (P)=\frac {1}{(1+P)^2}$
), among others. The parameters
$\phi (P)=\frac {1}{(1+P)^2}$
), among others. The parameters 
 $b,e,c,d,h,\alpha, \beta, d_1,d_2$
 are positive constants and prey-taxis sensitivity parameter
$b,e,c,d,h,\alpha, \beta, d_1,d_2$
 are positive constants and prey-taxis sensitivity parameter 
 $\xi \gt 0$
 or
$\xi \gt 0$
 or 
 $\xi \lt 0$
 for its different biological meanings. We would like to mention that the prey-taxis term in the model (1) is similar to the chemotaxis term in some population models, see the references [Reference Jin and Wang21, Reference Kong, Ward and Wei22, Reference Shen and Xue32], for instance. When the prey-taxis coefficient
$\xi \lt 0$
 for its different biological meanings. We would like to mention that the prey-taxis term in the model (1) is similar to the chemotaxis term in some population models, see the references [Reference Jin and Wang21, Reference Kong, Ward and Wei22, Reference Shen and Xue32], for instance. When the prey-taxis coefficient 
 $\xi =0$
 and the harvesting constant
$\xi =0$
 and the harvesting constant 
 $h=0$
, the model (1) degenerates into the classical IGP model, which was proposed by Holt and Polis in [Reference Holt and Polis14]. There are recent works focused on the dynamics of the IGP-type predator–prey model (1) with
$h=0$
, the model (1) degenerates into the classical IGP model, which was proposed by Holt and Polis in [Reference Holt and Polis14]. There are recent works focused on the dynamics of the IGP-type predator–prey model (1) with 
 $\xi =0$
 or
$\xi =0$
 or 
 $h=0$
. Ma et al. [Reference Ma, Huo and Xiang25] reported spatiotemporal patterns in the model with delay and cross-fractional diffusion, showing that cross-fractional diffusion can induce Turing pattern formation. If choosing the density function
$h=0$
. Ma et al. [Reference Ma, Huo and Xiang25] reported spatiotemporal patterns in the model with delay and cross-fractional diffusion, showing that cross-fractional diffusion can induce Turing pattern formation. If choosing the density function 
 $\phi (P)=P$
 and the harvesting constant
$\phi (P)=P$
 and the harvesting constant 
 $h=0$
, Wang and Wang [Reference Wang and Wang35] showed the boundedness of classical solutions and the global stability of the positive equilibrium. The existence of global-in-time solutions and the Hopf bifurcation of the model with Schoener’s kinetic and indirect taxis have been reported by Mishra and Wrzosek in [Reference Mishra and Wrzosek26].
$h=0$
, Wang and Wang [Reference Wang and Wang35] showed the boundedness of classical solutions and the global stability of the positive equilibrium. The existence of global-in-time solutions and the Hopf bifurcation of the model with Schoener’s kinetic and indirect taxis have been reported by Mishra and Wrzosek in [Reference Mishra and Wrzosek26].
 Let us state our tasks in this paper about the IGP-type predator–prey model (1). The first aim of this paper is to explore the solution profiles of the model (1). To be more specific, we want to study the local and global existence of the classical solution 
 $(P(x,t),Q(x,t))$
 in an
$(P(x,t),Q(x,t))$
 in an 
 $N$
-dimensional space. We can show that the IGP-type predator–prey model (1) admits a unique non-negative local-in-time classical solution
$N$
-dimensional space. We can show that the IGP-type predator–prey model (1) admits a unique non-negative local-in-time classical solution 
 $(P(x,t),Q(x,t))\in [C([0,T_{max});\, W^{1,p}(\Omega ))\cap C^{2,1}(\overline {\Omega }\times (0,T_{max}))]^2$
, with its maximal existence time
$(P(x,t),Q(x,t))\in [C([0,T_{max});\, W^{1,p}(\Omega ))\cap C^{2,1}(\overline {\Omega }\times (0,T_{max}))]^2$
, with its maximal existence time 
 $T_{max}$
 by virtue of the Amann’s theorem [Reference Amann2]. The global existence of the classical solution
$T_{max}$
 by virtue of the Amann’s theorem [Reference Amann2]. The global existence of the classical solution 
 $(P(x,t),Q(x,t))$
 for the IGP-type predator–prey model (1) can be obtained by using estimates and the Neumann heat semigroup theory [Reference Hillen, Painter and Winkler13, Reference Wu, Shi and Wu37]. Here, we can explain that the prey-taxis sensitivity coefficient
$(P(x,t),Q(x,t))$
 for the IGP-type predator–prey model (1) can be obtained by using estimates and the Neumann heat semigroup theory [Reference Hillen, Painter and Winkler13, Reference Wu, Shi and Wu37]. Here, we can explain that the prey-taxis sensitivity coefficient 
 $\xi$
 can govern the global existence of the classical solution
$\xi$
 can govern the global existence of the classical solution 
 $(P(x,t),Q(x,t))$
. Our theoretical results show that if
$(P(x,t),Q(x,t))$
. Our theoretical results show that if 
 $ 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)},$
 where
$ 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)},$
 where 
 $C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
 is valid, then the IGP-type predator–prey model (1) possesses a unique non-negative global classical solution
$C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
 is valid, then the IGP-type predator–prey model (1) possesses a unique non-negative global classical solution 
 $(P(x,t),Q(x,t))\in [C([0,\infty );\, W^{1,p}(\Omega ))\cap C^{2,1} (\overline {\Omega }\times (0,\infty ))]^2$
 and
$(P(x,t),Q(x,t))\in [C([0,\infty );\, W^{1,p}(\Omega ))\cap C^{2,1} (\overline {\Omega }\times (0,\infty ))]^2$
 and 
 $\|P(\cdot, t)\|_{L^{\infty }(\Omega )} +\|Q(\cdot, t)\|_{L^{\infty }(\Omega )} \leq M$
, where
$\|P(\cdot, t)\|_{L^{\infty }(\Omega )} +\|Q(\cdot, t)\|_{L^{\infty }(\Omega )} \leq M$
, where 
 $M$
 is a positive constant dependents on
$M$
 is a positive constant dependents on 
 $P_0(x)$
 and
$P_0(x)$
 and 
 $Q_{0}(x)$
 for
$Q_{0}(x)$
 for 
 $P_{0}(x),\ Q_0(x)\geq 0(\not \equiv 0)$
.
$P_{0}(x),\ Q_0(x)\geq 0(\not \equiv 0)$
.
 Using bifurcation theory, the exploration of spatiotemporal pattern formation in ecological models is still a hot research area. Consequently, our next task is to explore the existence of steady-state bifurcation and the stability of the bifurcating solutions for the spatial local system of the system (1) when 
 $\Omega =(0,L\pi )$
. This is
$\Omega =(0,L\pi )$
. This is
 \begin{align} \left \{ {\begin{array}{l@{\quad}l} \displaystyle d_1\Delta P-\nabla \cdot (\xi \phi (P)\nabla Q)+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )=0,\ &x\in \Omega, \\[6pt] \displaystyle d_2\Delta Q+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ=0,\ &x\in \Omega, \\[6pt] \displaystyle \frac {\partial P}{\partial \nu }=\frac {\partial Q}{\partial \nu }=0,\ &x\in \partial \Omega . \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{l@{\quad}l} \displaystyle d_1\Delta P-\nabla \cdot (\xi \phi (P)\nabla Q)+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )=0,\ &x\in \Omega, \\[6pt] \displaystyle d_2\Delta Q+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ=0,\ &x\in \Omega, \\[6pt] \displaystyle \frac {\partial P}{\partial \nu }=\frac {\partial Q}{\partial \nu }=0,\ &x\in \partial \Omega . \end{array}} \right . \end{align}
One difficulty is how to determine the stability of these bifurcating solutions of the system (2). Typically, scholars have adopted some existing techniques to investigate the stability of the bifurcating solutions. For instance, they use weakly nonlinear analysis method (or multiple time scale) [Reference Ohm and Shelley27, Reference Banerjee, Ghorai and Mukherjee3] and normal form theory [Reference Jiang, Wang and Cao20, Reference Faria12]. In these approaches, the authors derived the amplitude equations and normal forms so that the stability of the bifurcating solution can be established. In contrast to the previously mentioned technique, we will apply the Crandall–Rabinowitz local bifurcation theory [Reference Chen and Srivastava6, Reference Crandall and Rabinowitz8, Reference Crandall and Rabinowitz9, Reference Shi and Wang33, Reference Wang and Xu36] to demonstrate the existence and stability of the bifurcating solution (i.e., the nonconstant steady state) around the threshold of the steady-state bifurcation. By choosing the prey-taxis sensitivity coefficient 
 $\xi$
 as the steadystate bifurcation parameter, we can theoretically demonstrate that the repulsive prey-taxis (
$\xi$
 as the steadystate bifurcation parameter, we can theoretically demonstrate that the repulsive prey-taxis (
 $\xi \lt 0$
) could destabilize the spatial homogeneity of this IGP-type predator–prey model, while the attractive prey-taxis (
$\xi \lt 0$
) could destabilize the spatial homogeneity of this IGP-type predator–prey model, while the attractive prey-taxis (
 $\xi \gt 0$
) effect will stabilize the spatial homogeneity. Naturally, we conduct extensive numerical simulations to confirm our theoretical results by choosing different density functions
$\xi \gt 0$
) effect will stabilize the spatial homogeneity. Naturally, we conduct extensive numerical simulations to confirm our theoretical results by choosing different density functions 
 $\phi (P)$
. For example, considering linear form
$\phi (P)$
. For example, considering linear form 
 $\phi (P)=P$
, saturated form
$\phi (P)=P$
, saturated form 
 $\phi (P)=\frac {P}{1+P}$
, and the Ricker form
$\phi (P)=\frac {P}{1+P}$
, and the Ricker form 
 $\phi (P)=Pe^{-P}$
, we can observe the pattern formations in 1D and 2D domains, and on spherical and torus surfaces. We also investigate the influence of the harvesting effects on pattern formation. It is shown that extensive harvesting of IG prey will lead to the disappearance of spatial patterns. This phenomenon reminds us that over-harvesting for prey or predators is not advisable because of the drastic reduction in population numbers from the point of view of ecology.
$\phi (P)=Pe^{-P}$
, we can observe the pattern formations in 1D and 2D domains, and on spherical and torus surfaces. We also investigate the influence of the harvesting effects on pattern formation. It is shown that extensive harvesting of IG prey will lead to the disappearance of spatial patterns. This phenomenon reminds us that over-harvesting for prey or predators is not advisable because of the drastic reduction in population numbers from the point of view of ecology.
 In this paper, we require 
 $(P_{0}(x),Q_0(x))$
 and the density function
$(P_{0}(x),Q_0(x))$
 and the density function 
 $\phi (P)$
 to fulfill the following.
$\phi (P)$
 to fulfill the following.
- 
(H1)  $(P_{0}(x),Q_0(x))\in [W^{1,p}(\Omega )]^2$
 with $(P_{0}(x),Q_0(x))\in [W^{1,p}(\Omega )]^2$
 with $p\gt N$
 and $p\gt N$
 and $P_{0}(x),\ Q_{0}(x)\geq 0\ (\not \equiv 0)$
. $P_{0}(x),\ Q_{0}(x)\geq 0\ (\not \equiv 0)$
.
- 
(H2) There is a  $c_0$
 such that $c_0$
 such that $\phi (P)\leq c_0P$
 for $\phi (P)\leq c_0P$
 for $\forall P\geq 0$
 and $\forall P\geq 0$
 and $x\in \overline {\Omega }$
, where $x\in \overline {\Omega }$
, where $\phi :[0,\infty )\rightarrow [0,\infty )$
 is continuously differentiable and $\phi :[0,\infty )\rightarrow [0,\infty )$
 is continuously differentiable and $\phi (0)=0$
. Moreover, we suppose that $\phi (0)=0$
. Moreover, we suppose that
- 
(H3)  $\frac {\beta +h}{ed}\lt \frac {b}{e\alpha -c(\beta +h)}\lt \frac {\alpha }{cd}$
. $\frac {\beta +h}{ed}\lt \frac {b}{e\alpha -c(\beta +h)}\lt \frac {\alpha }{cd}$
.
 Now we can release our main results of this article. The first result is concerned with the global existence of the classical solution 
 $(P(x,t),Q(x,t))$
 of the system (1) with the assumptions (H1) and (H2).
$(P(x,t),Q(x,t))$
 of the system (1) with the assumptions (H1) and (H2).
Theorem 1.1. 
(Global existence of the classical solution) Suppose 
 $\Omega \subset \mathbb {R}^N$
 with the smooth boundary
$\Omega \subset \mathbb {R}^N$
 with the smooth boundary 
 $\partial \Omega$
 and the initial conditions
$\partial \Omega$
 and the initial conditions 
 $(P_0(x),Q_{0}(x))\in [W^{1,p}(\Omega )]^2$
 with
$(P_0(x),Q_{0}(x))\in [W^{1,p}(\Omega )]^2$
 with 
 $p\gt N$
 and
$p\gt N$
 and 
 $P_0(x)\geq 0,Q_{0}(x)\geq 0$
 for
$P_0(x)\geq 0,Q_{0}(x)\geq 0$
 for 
 $x\in \overline {\Omega }$
. If
$x\in \overline {\Omega }$
. If
 \begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)}, \end{align*}
\begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)}, \end{align*}
where 
 $C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
, then system (1) enjoys a unique global solution
$C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
, then system (1) enjoys a unique global solution 
 $(P(x,t),Q(x,t))\in [C([0,\infty );\,W^{1,p}(\Omega ))\cap C^{2,1} (\overline {\Omega }\times (0,\infty ))]^2$
 and
$(P(x,t),Q(x,t))\in [C([0,\infty );\,W^{1,p}(\Omega ))\cap C^{2,1} (\overline {\Omega }\times (0,\infty ))]^2$
 and
 \begin{equation*}\|P(\cdot, t)\|_{L^{\infty }(\Omega )} +\|Q(\cdot, t)\|_{L^{\infty }(\Omega )} \leq M,\end{equation*}
\begin{equation*}\|P(\cdot, t)\|_{L^{\infty }(\Omega )} +\|Q(\cdot, t)\|_{L^{\infty }(\Omega )} \leq M,\end{equation*}
where 
 $M$
 is a positive constant depending on
$M$
 is a positive constant depending on 
 $P_0(x)$
 and
$P_0(x)$
 and 
 $Q_{0}(x)$
 for
$Q_{0}(x)$
 for 
 $P_{0}(x),Q_0(x)\geq 0(\not \equiv 0)$
.
$P_{0}(x),Q_0(x)\geq 0(\not \equiv 0)$
.
Remark 1.1. Theorem 1.1 shows the global existence of the classical solutions when the prey-taxis is attractive-type. We shall point out that a similar result could also be obtained as the prey-taxis is repulsive-type in (1).
 Our following goal is to explore the existence and stability of the bifurcating solution induced by the steady state bifurcation. We need to mention that if the spatial dimension is high, namely, 
 $N\geq 2$
, the analysis of bifurcation is very difficult, especially to discuss the stability criterion of the bifurcating solution. Therefore, to finish our goal, we restrict
$N\geq 2$
, the analysis of bifurcation is very difficult, especially to discuss the stability criterion of the bifurcating solution. Therefore, to finish our goal, we restrict 
 $N=1$
 and choose
$N=1$
 and choose 
 $\Omega =(0,L\pi )$
 with
$\Omega =(0,L\pi )$
 with 
 $L\gt 0$
.
$L\gt 0$
.
 If the assumption (H3) is true and fix 
 $\Omega =(0,L\pi )$
 with
$\Omega =(0,L\pi )$
 with 
 $L\gt 0$
, then system (1) has a unique positive equilibrium
$L\gt 0$
, then system (1) has a unique positive equilibrium 
 $E_{*}=(P_{*},Q_{*})=\left (\frac {be}{e\alpha -c(\beta +h)}-\frac {\beta +h}{d},\frac {\alpha }{d}-\frac {bc}{e\alpha -c(\beta +h)}\right )$
. Define
$E_{*}=(P_{*},Q_{*})=\left (\frac {be}{e\alpha -c(\beta +h)}-\frac {\beta +h}{d},\frac {\alpha }{d}-\frac {bc}{e\alpha -c(\beta +h)}\right )$
. Define
 \begin{align} \xi _k^S=\frac {d_1d_2\delta _k^4-(f_Pd_2 +g_Qd_1)\delta _k^2+d^2P_{*}Q_{*}}{\phi (P^{*})g_P\delta _k^2}\lt 0,\ k\in \mathbb {N}_0=\{0,1,2,\cdot \cdot \cdot \}, \end{align}
\begin{align} \xi _k^S=\frac {d_1d_2\delta _k^4-(f_Pd_2 +g_Qd_1)\delta _k^2+d^2P_{*}Q_{*}}{\phi (P^{*})g_P\delta _k^2}\lt 0,\ k\in \mathbb {N}_0=\{0,1,2,\cdot \cdot \cdot \}, \end{align}
where 
 $\delta _k=\frac {k}{L}\gt 0$
 and
$\delta _k=\frac {k}{L}\gt 0$
 and 
 $f_P=-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}, g_P=-dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}, g_Q= -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}$
. Also, if there is a
$f_P=-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}, g_P=-dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}, g_Q= -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}$
. Also, if there is a 
 $k_0\in \mathbb {N}_0\backslash \{0\}$
 satisfying
$k_0\in \mathbb {N}_0\backslash \{0\}$
 satisfying
 \begin{align*} k_0= \left \{ {\begin{array}{l@{\quad}l} \left [\hat {k}_0\right ]+1, \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\leq \xi _{[\hat {k}_0]+1}^S,\\[5pt] \left [\hat {k}_0\right ], \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\gt \xi _{[\hat {k}_0]+1}^S \end{array}} \right . \end{align*}
\begin{align*} k_0= \left \{ {\begin{array}{l@{\quad}l} \left [\hat {k}_0\right ]+1, \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\leq \xi _{[\hat {k}_0]+1}^S,\\[5pt] \left [\hat {k}_0\right ], \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\gt \xi _{[\hat {k}_0]+1}^S \end{array}} \right . \end{align*}
with 
 $\hat {k}_0=L\sqrt {d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}}$
, then
$\hat {k}_0=L\sqrt {d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}}$
, then 
 $\xi _k^S$
 has its maximum
$\xi _k^S$
 has its maximum 
 $\xi _{k_0}^S$
 at
$\xi _{k_0}^S$
 at 
 $k=k_0$
, where
$k=k_0$
, where 
 $[\cdot ]$
 is the integer function.
$[\cdot ]$
 is the integer function.
 In this fashion, we can establish the stability result of the constant steady state 
 $E_{*}$
.
$E_{*}$
.
Theorem 1.2. 
(Local stability of the constant steady state 
 $E_{*}$
) Suppose that (H2)–(H3) are satisfied and take
$E_{*}$
) Suppose that (H2)–(H3) are satisfied and take 
 $\Omega =(0,L\pi )$
 with
$\Omega =(0,L\pi )$
 with 
 $L\gt 0$
.
$L\gt 0$
.
- 
(i) If  $\xi \geq 0$
, $\xi \geq 0$
, $E_{*}$
 is locally asymptotically stable; $E_{*}$
 is locally asymptotically stable;
- 
(ii) If  $\xi =\xi _k^S$
, then system (1) suffers from the steady-state bifurcation. Moreover, $\xi =\xi _k^S$
, then system (1) suffers from the steady-state bifurcation. Moreover, $E_{*}$
 is locally asymptotically stable as $E_{*}$
 is locally asymptotically stable as $\xi _k^S\lt \xi \lt 0$
 and it becomes unstable when $\xi _k^S\lt \xi \lt 0$
 and it becomes unstable when $\xi \lt \xi _k^S\lt 0$
; $\xi \lt \xi _k^S\lt 0$
;
- 
(iii) If  $0\lt \xi ^2\lt \frac {4d_1d_2Q_{*}}{c_0^2P_{*}C_1^2}$
, then $0\lt \xi ^2\lt \frac {4d_1d_2Q_{*}}{c_0^2P_{*}C_1^2}$
, then $E_{*}$
 is globally asymptotically stable. $E_{*}$
 is globally asymptotically stable.
Remark 1.2. Clearly, if 
 $k=k_0$
, then system (1) will undergo the steady-state bifurcation at the threshold
$k=k_0$
, then system (1) will undergo the steady-state bifurcation at the threshold 
 $\xi =\xi _{k_0}^S$
. We will later discuss the existence and stability of the nonconstant steady state (bifurcating solution) at this onset.
$\xi =\xi _{k_0}^S$
. We will later discuss the existence and stability of the nonconstant steady state (bifurcating solution) at this onset.
Remark 1.3. From (i)–(ii) of Theorem1.2, we infer that the repulsive prey-taxis (i.e., 
 $\xi \lt 0$
) could destabilize the spatial homogeneity of the IGP predator–prey model (1). On the contrary, the attractive prey-taxis effect (i.e.,
$\xi \lt 0$
) could destabilize the spatial homogeneity of the IGP predator–prey model (1). On the contrary, the attractive prey-taxis effect (i.e., 
 $\xi \gt 0$
) and self-diffusion (i.e.,
$\xi \gt 0$
) and self-diffusion (i.e., 
 $\xi =0$
) will stabilize the spatial homogeneity.
$\xi =0$
) will stabilize the spatial homogeneity.
 Our third result implies that system (2) exhibits nonconstant steady state around 
 $(P_{*},Q_{*},\xi _k^S)$
 for
$(P_{*},Q_{*},\xi _k^S)$
 for 
 $k\in \mathbb {N}_0\backslash \{0\}$
 in
$k\in \mathbb {N}_0\backslash \{0\}$
 in 
 $\mathbf {X}=\{u\in H^2(0,L\pi )|u^{\prime }(0)=u^{\prime }(L\pi )=0\}$
. To do so, define
$\mathbf {X}=\{u\in H^2(0,L\pi )|u^{\prime }(0)=u^{\prime }(L\pi )=0\}$
. To do so, define
 \begin{align} \mathcal {F}(P,Q,\xi )=\left ( \begin{array}{c@{\quad}c@{\quad}c} \displaystyle (d_1P^{\prime }-\xi \phi (P) Q^{\prime })^{\prime }+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )\\[3pt] \displaystyle d_2 Q^{\prime \prime }+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ \end{array} \right ) \end{align}
\begin{align} \mathcal {F}(P,Q,\xi )=\left ( \begin{array}{c@{\quad}c@{\quad}c} \displaystyle (d_1P^{\prime }-\xi \phi (P) Q^{\prime })^{\prime }+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )\\[3pt] \displaystyle d_2 Q^{\prime \prime }+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ \end{array} \right ) \end{align}
and the Fr
 $\acute {\textrm {e}}$
chet derivative
$\acute {\textrm {e}}$
chet derivative 
 $D_{(P,Q)}\mathcal {F}(\breve {P},\breve {Q},\xi )(P,Q)$
 of the operator
$D_{(P,Q)}\mathcal {F}(\breve {P},\breve {Q},\xi )(P,Q)$
 of the operator 
 $\mathcal {F}(P,Q,\xi )$
. Then, for any
$\mathcal {F}(P,Q,\xi )$
. Then, for any 
 $(\breve {P},\breve {Q},\xi )\in \mathbf {X}\times \mathbf {X}\times \mathbb {R}$
, we deduce
$(\breve {P},\breve {Q},\xi )\in \mathbf {X}\times \mathbf {X}\times \mathbb {R}$
, we deduce
 \begin{align} &D_{(P,Q)}\mathcal {F}(\breve {P},\breve {Q},\xi )(P,Q)\\[3pt] \nonumber \displaystyle = & \left ( \begin{array}{c@{\quad}c@{\quad}c} d_1P^{\prime \prime }-\xi (\phi ^{\prime }(\breve {P})P \breve {Q}^{\prime }+\phi (\breve {P}) Q^{\prime })^{\prime } +\left [\frac {bce\breve {Q}}{(c\breve {P}+e\breve {Q})^2}+d\breve {Q}-\alpha \right ]P +\left [d\breve {P}-\frac {bce\breve {P}}{(c\breve {P}+e\breve {Q})^2}\right ]Q\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [d\breve {Q}+\frac {bce\breve {Q}}{(c\breve {P}+e\breve {Q})^2}\right ]P +\left [\frac {bce\breve {P}}{(c\breve {P}+e\breve {Q})^2}-d\breve {P}-\beta -h\right ]Q \end{array} \right ). \end{align}
\begin{align} &D_{(P,Q)}\mathcal {F}(\breve {P},\breve {Q},\xi )(P,Q)\\[3pt] \nonumber \displaystyle = & \left ( \begin{array}{c@{\quad}c@{\quad}c} d_1P^{\prime \prime }-\xi (\phi ^{\prime }(\breve {P})P \breve {Q}^{\prime }+\phi (\breve {P}) Q^{\prime })^{\prime } +\left [\frac {bce\breve {Q}}{(c\breve {P}+e\breve {Q})^2}+d\breve {Q}-\alpha \right ]P +\left [d\breve {P}-\frac {bce\breve {P}}{(c\breve {P}+e\breve {Q})^2}\right ]Q\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [d\breve {Q}+\frac {bce\breve {Q}}{(c\breve {P}+e\breve {Q})^2}\right ]P +\left [\frac {bce\breve {P}}{(c\breve {P}+e\breve {Q})^2}-d\breve {P}-\beta -h\right ]Q \end{array} \right ). \end{align}
Let 
 $(\breve {P},\breve {Q},\xi )=(P_{*},Q_{*},\xi )$
, we obtain
$(\breve {P},\breve {Q},\xi )=(P_{*},Q_{*},\xi )$
, we obtain
 \begin{align} &D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )(P,Q)\\[3pt] \nonumber \displaystyle =& \left ( \begin{array}{c@{\quad}c@{\quad}c} d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } +\left [\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}+dQ_{*}-\alpha \right ]P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P +\left [\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}-dP_{*}-\beta -h\right ]Q\\[6pt] \displaystyle \end{array} \right )\\[6pt] \displaystyle \nonumber =&\left ( \begin{array}{c@{\quad}c@{\quad}c} d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q \end{array} \right ). \end{align}
\begin{align} &D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )(P,Q)\\[3pt] \nonumber \displaystyle =& \left ( \begin{array}{c@{\quad}c@{\quad}c} d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } +\left [\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}+dQ_{*}-\alpha \right ]P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P +\left [\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}-dP_{*}-\beta -h\right ]Q\\[6pt] \displaystyle \end{array} \right )\\[6pt] \displaystyle \nonumber =&\left ( \begin{array}{c@{\quad}c@{\quad}c} d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q \end{array} \right ). \end{align}
We can establish the following.
Theorem 1.3. 
(Existence of the nonconstant steady state) Suppose that (H1)–(H3) are satisfied and take 
 $\Omega =(0,L\pi )$
 with
$\Omega =(0,L\pi )$
 with 
 $L\gt 0$
,
$L\gt 0$
, 
 $\xi _j^S\neq \xi _k^S$
 for
$\xi _j^S\neq \xi _k^S$
 for 
 $j\neq k$
 and
$j\neq k$
 and 
 $k\in \mathbb {N}_0\setminus \{0\}$
, where
$k\in \mathbb {N}_0\setminus \{0\}$
, where 
 $\xi _k^S$
 is given by (3). Then system (2) admits a spatially inhomogeneous solution which resulted from
$\xi _k^S$
 is given by (3). Then system (2) admits a spatially inhomogeneous solution which resulted from 
 $(P_{*},Q_{*})$
 when
$(P_{*},Q_{*})$
 when 
 $\xi =\xi _k^S$
 for
$\xi =\xi _k^S$
 for 
 $k\in \mathbb {N}_0\setminus \{0\}$
. Moreover, in the vicinity of the onset
$k\in \mathbb {N}_0\setminus \{0\}$
. Moreover, in the vicinity of the onset 
 $(P_{*},Q_{*},\xi _k^S)$
, there exists a bifurcation branch
$(P_{*},Q_{*},\xi _k^S)$
, there exists a bifurcation branch 
 $\mathcal {S}_k(\varepsilon )=(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 that satisfies
$\mathcal {S}_k(\varepsilon )=(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 that satisfies
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \xi _k^S(\varepsilon )=\xi _k^S+\mathcal {O}(\varepsilon ),\\[3pt] (P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))=(P_{*},Q_{*}) +\varepsilon (\widehat {P}_{k},\widehat {Q}_{k})+\mathcal {O}(\varepsilon ) \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \xi _k^S(\varepsilon )=\xi _k^S+\mathcal {O}(\varepsilon ),\\[3pt] (P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))=(P_{*},Q_{*}) +\varepsilon (\widehat {P}_{k},\widehat {Q}_{k})+\mathcal {O}(\varepsilon ) \end{array}} \right . \end{align}
for any 
 $\varepsilon \in ({-}\varrho, \varrho )$
 and
$\varepsilon \in ({-}\varrho, \varrho )$
 and 
 $\varrho$
 is a small positive constant. Also,
$\varrho$
 is a small positive constant. Also, 
 $(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))-(P_{*},Q_{*}) -\varepsilon (\widehat {P}_{k},\widehat {Q}_{k})=\mathcal {O}(\varepsilon )\in \mathcal {K}$
 with
$(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))-(P_{*},Q_{*}) -\varepsilon (\widehat {P}_{k},\widehat {Q}_{k})=\mathcal {O}(\varepsilon )\in \mathcal {K}$
 with 
 $\mathcal {K}$
 is a closed complement of
$\mathcal {K}$
 is a closed complement of 
 $\mathcal {N}(D_{(P, Q)}\mathcal {F}(P_{*},Q_{*},\xi ))$
 and it admits
$\mathcal {N}(D_{(P, Q)}\mathcal {F}(P_{*},Q_{*},\xi ))$
 and it admits
 \begin{align} \mathcal {K}=\left \{(P,Q)\in \mathbf {X}\times \mathbf {X}\Big | \int _0^{L\pi }(P\widehat {P}_{k}+Q\widehat {Q}_{k})dx=0\right \}, \end{align}
\begin{align} \mathcal {K}=\left \{(P,Q)\in \mathbf {X}\times \mathbf {X}\Big | \int _0^{L\pi }(P\widehat {P}_{k}+Q\widehat {Q}_{k})dx=0\right \}, \end{align}
where 
 $\mathcal {N}$
 is null space and
$\mathcal {N}$
 is null space and
 \begin{align} \widehat {P}_{k}=\mathrm {cos}\frac {k x}{L},\ \widehat {Q}_{k}=\alpha _k\mathrm {cos}\frac {k x}{L} \end{align}
\begin{align} \widehat {P}_{k}=\mathrm {cos}\frac {k x}{L},\ \widehat {Q}_{k}=\alpha _k\mathrm {cos}\frac {k x}{L} \end{align}
with
 \begin{align*} \alpha _k=-\frac {dQ_{*}(cP_{*}+eQ_{*})^2+bceQ_{*}}{be^2Q_{*}+d_2\delta _k^2(cP_{*}+eQ_{*})^2}\lt 0,\ \ k\in \mathbb {N}_0\backslash \{0\}. \end{align*}
\begin{align*} \alpha _k=-\frac {dQ_{*}(cP_{*}+eQ_{*})^2+bceQ_{*}}{be^2Q_{*}+d_2\delta _k^2(cP_{*}+eQ_{*})^2}\lt 0,\ \ k\in \mathbb {N}_0\backslash \{0\}. \end{align*}
 Benefiting form (7) of Theorem1.3, we can set 
 $\xi _k^S(\varepsilon )=\xi _k^S+\varepsilon \xi _1+\varepsilon ^2\xi _2+\cdot \cdot \cdot, $
 where
$\xi _k^S(\varepsilon )=\xi _k^S+\varepsilon \xi _1+\varepsilon ^2\xi _2+\cdot \cdot \cdot, $
 where 
 $\xi _1$
 and
$\xi _1$
 and 
 $\xi _2$
 are undetermined constants. Let
$\xi _2$
 are undetermined constants. Let 
 $\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}}\xi _k^S$
. Accordingly, our fourth result shows that
$\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}}\xi _k^S$
. Accordingly, our fourth result shows that 
 $\xi _1=0$
 and the sign of
$\xi _1=0$
 and the sign of 
 $\xi _2$
 uniquely determines the stability of the bifurcating solution
$\xi _2$
 uniquely determines the stability of the bifurcating solution 
 $(P_{k_0}(\varepsilon, x),Q_{k_0}(\varepsilon, x))$
 for
$(P_{k_0}(\varepsilon, x),Q_{k_0}(\varepsilon, x))$
 for 
 $\varepsilon \in ({-}\varrho, \varrho )$
.
$\varepsilon \in ({-}\varrho, \varrho )$
.
Theorem 1.4. 
(Local stability of the nonconstant steady state) Suppose that the conditions (H1)–(H3) hold and fix 
 $\Omega =(0,L\pi )$
 with
$\Omega =(0,L\pi )$
 with 
 $L\gt 0$
. Then we can compute the first perturbation term
$L\gt 0$
. Then we can compute the first perturbation term 
 $\xi _1=0$
 in
$\xi _1=0$
 in 
 $\xi _{k}^S(\varepsilon )$
. In addition, when
$\xi _{k}^S(\varepsilon )$
. In addition, when 
 $k=k_0$
, near
$k=k_0$
, near 
 $(P_{*},Q_{*},\xi _{k_0}^S)$
, the bifurcating solution
$(P_{*},Q_{*},\xi _{k_0}^S)$
, the bifurcating solution 
 $\mathcal {S}_{k_0}(\varepsilon )=(P_{k_0}(\varepsilon, x),Q_{k_0}(\varepsilon, x))$
 is asymptotically stable when
$\mathcal {S}_{k_0}(\varepsilon )=(P_{k_0}(\varepsilon, x),Q_{k_0}(\varepsilon, x))$
 is asymptotically stable when 
 $\xi _2\lt 0$
 and it is unstable as
$\xi _2\lt 0$
 and it is unstable as 
 $\xi _2\gt 0$
 for
$\xi _2\gt 0$
 for 
 $\varepsilon \in ({-}\varrho, \varrho )$
.
$\varepsilon \in ({-}\varrho, \varrho )$
.
Remark 1.4. The results presented in Theorem1.4 show that the stability of the bifurcating solution (namely, nonconstant steady state) completely depends on the symbol of the second perturbation term 
 $\xi _2$
 in
$\xi _2$
 in 
 $\xi _{k}^S(\varepsilon )$
 for
$\xi _{k}^S(\varepsilon )$
 for 
 $\varepsilon \in ({-}\varrho, \varrho )$
.
$\varepsilon \in ({-}\varrho, \varrho )$
.
2. Existence and boundedness of classical solution
Lemma 2.1. 
Suppose that 
 $\Omega \subset \mathbb {R}^N$
 with the smooth boundary
$\Omega \subset \mathbb {R}^N$
 with the smooth boundary 
 $\partial \Omega$
 and
$\partial \Omega$
 and 
 $(P_0(x),Q_0(x))\in [W^{1,p}(\Omega )]^2$
 with
$(P_0(x),Q_0(x))\in [W^{1,p}(\Omega )]^2$
 with 
 $p\gt N$
 fulfilling
$p\gt N$
 fulfilling 
 $P_0(x)\geq 0,Q_{0}(x)\geq 0$
 for
$P_0(x)\geq 0,Q_{0}(x)\geq 0$
 for 
 $x\in \overline {\Omega }$
. Then, we can yield the following.
$x\in \overline {\Omega }$
. Then, we can yield the following.
- 
(i) System ( 1 ) enjoys a unique nonnegative classical solution  $(P(x,t),Q(x,t))$
 satisfying $(P(x,t),Q(x,t))$
 satisfying $(P(x,t),Q(x,t))\in [C([0,T_{max});\, W^{1,p}(\Omega ))\cap C^{2,1}(\overline {\Omega }\times (0,T_{max}))]^2$
. Also, we have
(10)where $(P(x,t),Q(x,t))\in [C([0,T_{max});\, W^{1,p}(\Omega ))\cap C^{2,1}(\overline {\Omega }\times (0,T_{max}))]^2$
. Also, we have
(10)where \begin{align} P(x,t)\gt 0,\ Q(x,t)\leq C_1,\ x\in \overline {\Omega },\ t\in [0,T_{max}) \end{align} \begin{align} P(x,t)\gt 0,\ Q(x,t)\leq C_1,\ x\in \overline {\Omega },\ t\in [0,T_{max}) \end{align} $C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
 and $C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
 and $T_{max}\gt 0$
 implies that the maximal existence time. $T_{max}\gt 0$
 implies that the maximal existence time.
- 
(ii) There are  $C_2\gt 0$
 and $C_2\gt 0$
 and $C_3\gt 0$
 such that
where $C_3\gt 0$
 such that
where \begin{align*} \|Q(x,t)\|_{L^1(\Omega )}\leq C_2,\ \|P(x,t)\|_{L^1(\Omega )}\leq C_3,\ t\in (0,T_{max}), \end{align*} \begin{align*} \|Q(x,t)\|_{L^1(\Omega )}\leq C_2,\ \|P(x,t)\|_{L^1(\Omega )}\leq C_3,\ t\in (0,T_{max}), \end{align*} \begin{align*} C_2=\mathrm {max}\left \{\int _\Omega Q_0(x)dx,\frac {b|\Omega |}{h+\beta }\right \},\ C_3=\mathrm {max}\left \{\int _\Omega \left (P_0(x)+Q_{0}(x)\right )dx,\frac {b|\Omega |}{\min \{\alpha, h+\beta \}}\right \}. \end{align*} \begin{align*} C_2=\mathrm {max}\left \{\int _\Omega Q_0(x)dx,\frac {b|\Omega |}{h+\beta }\right \},\ C_3=\mathrm {max}\left \{\int _\Omega \left (P_0(x)+Q_{0}(x)\right )dx,\frac {b|\Omega |}{\min \{\alpha, h+\beta \}}\right \}. \end{align*}
- 
(iii) If for any  $T\gt 0$
, there exists $T\gt 0$
, there exists $C(T)$
 such that
then there holds $C(T)$
 such that
then there holds \begin{align*} \sup _{0\leq t\leq T}\|P(x,t),Q(x,t)\|_{L^\infty (\Omega )}\leq C(T),\ 0\lt T\lt \min \{1,T_{max}\}, \end{align*} \begin{align*} \sup _{0\leq t\leq T}\|P(x,t),Q(x,t)\|_{L^\infty (\Omega )}\leq C(T),\ 0\lt T\lt \min \{1,T_{max}\}, \end{align*} $T_{max}=+\infty$
, where $T_{max}=+\infty$
, where $C(T)$
 depends on $C(T)$
 depends on $T$
 and $T$
 and $\|P_{0}(x),Q_0(x)\|_{W^{1,p}(\Omega )}$
. $\|P_{0}(x),Q_0(x)\|_{W^{1,p}(\Omega )}$
.
Proof. The local-in-time existence of the nonnegative classical solution 
 $(P(x,t),Q(x,t))$
 in (i) can be confirmed by employing Amann’s theorem [Reference Amann2]. Next, using the
$(P(x,t),Q(x,t))$
 in (i) can be confirmed by employing Amann’s theorem [Reference Amann2]. Next, using the 
 $P-$
equation of (1), we obtain
$P-$
equation of (1), we obtain
 \begin{align*} \left \{ {\begin{array}{l@{\quad}l} \frac {\partial P}{\partial t}=d_1\Delta P-\xi \phi ^{\prime }(P)\nabla P\nabla Q-\xi \phi (P)\Delta Q+P\Gamma (P,Q),\ \ &x\in \Omega, \ t\in (0,T_{max}),\\[3pt] \frac {\partial P}{\partial \nu }=0,\ \ &x\in \partial \Omega, \ t\in (0,T_{max}),\\[3pt] P(x,0)=P_{0}(x)\geq 0,\ \ &x\in \Omega, \end{array}} \right . \end{align*}
\begin{align*} \left \{ {\begin{array}{l@{\quad}l} \frac {\partial P}{\partial t}=d_1\Delta P-\xi \phi ^{\prime }(P)\nabla P\nabla Q-\xi \phi (P)\Delta Q+P\Gamma (P,Q),\ \ &x\in \Omega, \ t\in (0,T_{max}),\\[3pt] \frac {\partial P}{\partial \nu }=0,\ \ &x\in \partial \Omega, \ t\in (0,T_{max}),\\[3pt] P(x,0)=P_{0}(x)\geq 0,\ \ &x\in \Omega, \end{array}} \right . \end{align*}
where 
 $\Gamma (P,Q)=\frac {bc}{cP+eQ}+dQ-\alpha$
. It follows from the maximum principle that
$\Gamma (P,Q)=\frac {bc}{cP+eQ}+dQ-\alpha$
. It follows from the maximum principle that 
 $0$
 is a lower solution for the above equation. Thus, it follows that
$0$
 is a lower solution for the above equation. Thus, it follows that 
 $P(x,t)\geq 0$
 for all
$P(x,t)\geq 0$
 for all 
 $(x,t)\in \Omega \times (0,T_{max})$
. Using the strong maximum principle and the initial data
$(x,t)\in \Omega \times (0,T_{max})$
. Using the strong maximum principle and the initial data 
 $P_{0}(x)\geq 0(\not \equiv 0)$
, one can claim that
$P_{0}(x)\geq 0(\not \equiv 0)$
, one can claim that 
 $P(x,t)\gt 0$
 is true. Next, from the
$P(x,t)\gt 0$
 is true. Next, from the 
 $Q-$
equation of (1), one can derive
$Q-$
equation of (1), one can derive
 \begin{align*} \left \{ {\begin{array}{l@{\quad}l} \displaystyle \frac {\partial Q}{\partial t}-d_2\Delta Q\leq Q\left (\frac {b}{Q}-\beta \right )-hQ,\ \ &x\in \Omega, \ t\gt 0,\\[6pt] \displaystyle \frac {\partial Q}{\partial \nu }=0,\ \ &x\in \partial \Omega, \ t\geq 0,\\[6pt] Q(x,0)=Q_{0}(x)\geq 0,\ \ &x\in \Omega . \end{array}} \right . \end{align*}
\begin{align*} \left \{ {\begin{array}{l@{\quad}l} \displaystyle \frac {\partial Q}{\partial t}-d_2\Delta Q\leq Q\left (\frac {b}{Q}-\beta \right )-hQ,\ \ &x\in \Omega, \ t\gt 0,\\[6pt] \displaystyle \frac {\partial Q}{\partial \nu }=0,\ \ &x\in \partial \Omega, \ t\geq 0,\\[6pt] Q(x,0)=Q_{0}(x)\geq 0,\ \ &x\in \Omega . \end{array}} \right . \end{align*}
Therefore, the maximum principle gives that 
 $Q(x,t)\leq \frac {b}{h+\beta }$
 for any
$Q(x,t)\leq \frac {b}{h+\beta }$
 for any 
 $(x,t)\in \Omega \times (0,T_{max})$
. For (ii), integrating the
$(x,t)\in \Omega \times (0,T_{max})$
. For (ii), integrating the 
 $Q-$
equation of (1) over
$Q-$
equation of (1) over 
 $\Omega$
, we get
$\Omega$
, we get
 \begin{align*} \frac {d }{d t}\int _\Omega Qdx\leq b|\Omega |-(h+\beta )\int _\Omega Qdx. \end{align*}
\begin{align*} \frac {d }{d t}\int _\Omega Qdx\leq b|\Omega |-(h+\beta )\int _\Omega Qdx. \end{align*}
Accordingly, one has
 \begin{align*} \int _\Omega Qdx\leq \mathrm {max}\left \{\int _\Omega Q_0(x)dx,\frac {b|\Omega |}{h+\beta }\right \}\,:\!=\, C_2. \end{align*}
\begin{align*} \int _\Omega Qdx\leq \mathrm {max}\left \{\int _\Omega Q_0(x)dx,\frac {b|\Omega |}{h+\beta }\right \}\,:\!=\, C_2. \end{align*}
On the other hand, we can obtain
 \begin{align*} \frac {d }{d t}\int _\Omega \left (P+Q\right )dx= b|\Omega |-\alpha \int _\Omega Pdx-(h+\beta )\int _\Omega Qdx \leq b|\Omega |-\min \{\alpha, (h+\beta )\}\int _\Omega (P+ Q)dx. \end{align*}
\begin{align*} \frac {d }{d t}\int _\Omega \left (P+Q\right )dx= b|\Omega |-\alpha \int _\Omega Pdx-(h+\beta )\int _\Omega Qdx \leq b|\Omega |-\min \{\alpha, (h+\beta )\}\int _\Omega (P+ Q)dx. \end{align*}
This gives
 \begin{align*} \int _\Omega Pdx\leq \mathrm {max}\left \{\int _\Omega \left (P_0(x)+Q_{0}(x)\right )dx,\frac {b|\Omega |}{\min \{\alpha, h+\beta \}}\right \}\,:\!=\, C_3. \end{align*}
\begin{align*} \int _\Omega Pdx\leq \mathrm {max}\left \{\int _\Omega \left (P_0(x)+Q_{0}(x)\right )dx,\frac {b|\Omega |}{\min \{\alpha, h+\beta \}}\right \}\,:\!=\, C_3. \end{align*}
Finally, conclusion (iii) can be directly obtained by using Theorem 15.5 in [Reference Amann1]. This ends the proof.
 Lemma2.1 shows the local-in-time existence of the classical solution 
 $(P(x,t),Q(x,t))$
, our following goal is exploring its global existence. To obtain the global existence of the classical solution
$(P(x,t),Q(x,t))$
, our following goal is exploring its global existence. To obtain the global existence of the classical solution 
 $(P(x,t),Q(x,t))$
, we introduce some existing results.
$(P(x,t),Q(x,t))$
, we introduce some existing results.
Lemma 2.2. 
(Lemma2.6 of [22]) Suppose that 
 $z(t)$
 satisfies
$z(t)$
 satisfies
 \begin{align*} \left \{ {\begin{array}{*{20}{l}} z^{\prime }(t)\leq -a_1z^\ell (t)+a_2z(t)+a_3,\\[3pt] z(0)=z_0\gt 0, \end{array}} \right . \end{align*}
\begin{align*} \left \{ {\begin{array}{*{20}{l}} z^{\prime }(t)\leq -a_1z^\ell (t)+a_2z(t)+a_3,\\[3pt] z(0)=z_0\gt 0, \end{array}} \right . \end{align*}
where 
 $a_1,a_2,a_3\gt 0$
 and
$a_1,a_2,a_3\gt 0$
 and 
 $\ell \gt 1$
. Then,
$\ell \gt 1$
. Then,
 \begin{align*} z(t)\leq \mathrm {max}\{C_4(z_0),C_5(a_1,a_2,a_3,\ell )\}. \end{align*}
\begin{align*} z(t)\leq \mathrm {max}\{C_4(z_0),C_5(a_1,a_2,a_3,\ell )\}. \end{align*}
Lemma 2.3. 
For 
 $n\gt 1$
,
$n\gt 1$
, 
 $p(x)\geq 0$
 and
$p(x)\geq 0$
 and 
 $q(x)\geq 0$
, the following inequality holds
$q(x)\geq 0$
, the following inequality holds
 \begin{align*} \int _\Omega p^{n-1}\varphi (q)dx\leq C_6\int _\Omega p^n\varphi (q)dx+C_7, \end{align*}
\begin{align*} \int _\Omega p^{n-1}\varphi (q)dx\leq C_6\int _\Omega p^n\varphi (q)dx+C_7, \end{align*}
where 
 $C_6$
 and
$C_6$
 and 
 $C_7$
 are positive constants and
$C_7$
 are positive constants and 
 $\varphi (q)$
 is bounded with respect to
$\varphi (q)$
 is bounded with respect to 
 $q$
.
$q$
.
Proof. By employing 
 $\varepsilon -$
Young inequality, we get
$\varepsilon -$
Young inequality, we get
 \begin{align*} \int _\Omega p^{n-1}\varphi (q)dx \leq &\varepsilon \int _\Omega (p^{n-1}\varphi (q))^{\frac {n}{n-1}}dx+C_\varepsilon |\Omega | \\[3pt]=&\varepsilon \int _\Omega (\varphi (q))^{\frac {1}{n-1}}(p^{n}\varphi (q))dx+C_\varepsilon |\Omega | \leq C_6\int _\Omega p^n\varphi (q)dx+C_7. \end{align*}
\begin{align*} \int _\Omega p^{n-1}\varphi (q)dx \leq &\varepsilon \int _\Omega (p^{n-1}\varphi (q))^{\frac {n}{n-1}}dx+C_\varepsilon |\Omega | \\[3pt]=&\varepsilon \int _\Omega (\varphi (q))^{\frac {1}{n-1}}(p^{n}\varphi (q))dx+C_\varepsilon |\Omega | \leq C_6\int _\Omega p^n\varphi (q)dx+C_7. \end{align*}
This ends the proof.
Lemma 2.4. 
(Lemma2.3 of [22]) Suppose 
 $m\in \{0,1\},p\in [1,\infty )$
, and
$m\in \{0,1\},p\in [1,\infty )$
, and 
 $q\in (1,\infty )$
. Then, there is a
$q\in (1,\infty )$
. Then, there is a 
 $C_{8}\gt 0$
 such that
$C_{8}\gt 0$
 such that
 \begin{align} \|u\|_{W^{m,p}(\Omega )}\leq C_{8}\|({-}\Delta +1)^k u\|_{L^{q}(\Omega )}, \end{align}
\begin{align} \|u\|_{W^{m,p}(\Omega )}\leq C_{8}\|({-}\Delta +1)^k u\|_{L^{q}(\Omega )}, \end{align}
for 
 $u\in D(({-}\Delta +1)^k)$
 with
$u\in D(({-}\Delta +1)^k)$
 with 
 ${D(({-}\Delta +1)^k)}=\left \{\zeta \in W^{2,p}(\Omega ):\zeta _\nu =0\ \textrm {over}\ \partial \Omega \right \}$
 and
${D(({-}\Delta +1)^k)}=\left \{\zeta \in W^{2,p}(\Omega ):\zeta _\nu =0\ \textrm {over}\ \partial \Omega \right \}$
 and 
 $k\in (0,1)$
 satisfies
$k\in (0,1)$
 satisfies
 \begin{align*} m-\frac {N}{p}\lt 2k-\frac {N}{q}. \end{align*}
\begin{align*} m-\frac {N}{p}\lt 2k-\frac {N}{q}. \end{align*}
In addition, if 
 $q\geq p$
 is satisfied, then
$q\geq p$
 is satisfied, then 
 $C_9\gt 0$
 and
$C_9\gt 0$
 and 
 $\gamma \gt 0$
 exist such that
$\gamma \gt 0$
 exist such that
 \begin{align} \|({-}\Delta +1)^k e^{-t({-}\Delta +1)}u\|_{L^{q}(\Omega )}\leq C_9t^{-k-\frac {N}{2}\left (\frac {1}{p}-\frac {1}{q}\right )}e^{-\gamma t}\|u\|_{L^{q}(\Omega )}, \end{align}
\begin{align} \|({-}\Delta +1)^k e^{-t({-}\Delta +1)}u\|_{L^{q}(\Omega )}\leq C_9t^{-k-\frac {N}{2}\left (\frac {1}{p}-\frac {1}{q}\right )}e^{-\gamma t}\|u\|_{L^{q}(\Omega )}, \end{align}
for 
 $u\in L^{p}(\Omega )$
, where the diffusion semigroup
$u\in L^{p}(\Omega )$
, where the diffusion semigroup 
 $\{e^{-t({-}\Delta +1)}\}_{t\geq 0}$
 maps
$\{e^{-t({-}\Delta +1)}\}_{t\geq 0}$
 maps 
 $L^{p}(\Omega )$
 into
$L^{p}(\Omega )$
 into 
 $D(({-}\Delta +1)^k)$
. Moreover, for any
$D(({-}\Delta +1)^k)$
. Moreover, for any 
 $p\in (1,\infty )$
 and
$p\in (1,\infty )$
 and 
 $\varepsilon \gt 0$
, there are
$\varepsilon \gt 0$
, there are 
 $C_{10}\gt 0$
 and
$C_{10}\gt 0$
 and 
 $\mu \gt 0$
 satisfying
$\mu \gt 0$
 satisfying
 \begin{align} \|({-}\Delta +1)^k e^{t\Delta }\nabla \cdot u\|_{L^{q}(\Omega )}\leq C_{10}t^{-k-\frac {1}{2}-\varepsilon } e^{-\mu t}\|u\|_{L^{p}(\Omega )} \end{align}
\begin{align} \|({-}\Delta +1)^k e^{t\Delta }\nabla \cdot u\|_{L^{q}(\Omega )}\leq C_{10}t^{-k-\frac {1}{2}-\varepsilon } e^{-\mu t}\|u\|_{L^{p}(\Omega )} \end{align}
for 
 $u\in L^{p}(\Omega )$
.
$u\in L^{p}(\Omega )$
.
Now we can prove the following results.
Lemma 2.5. 
Assume that 
 $\Omega \subset \mathbb {R}^N$
 with the smooth boundary
$\Omega \subset \mathbb {R}^N$
 with the smooth boundary 
 $\partial \Omega$
, the initial condition
$\partial \Omega$
, the initial condition 
 $(P_0(x),Q_{0}(x))\in [W^{1,p}(\Omega )]^2$
 with
$(P_0(x),Q_{0}(x))\in [W^{1,p}(\Omega )]^2$
 with 
 $p\gt N$
 and
$p\gt N$
 and 
 $P_0(x)\geq 0,\ Q_{0}(x)\geq 0$
 for
$P_0(x)\geq 0,\ Q_{0}(x)\geq 0$
 for 
 $x\in \overline {\Omega }$
. If
$x\in \overline {\Omega }$
. If
 \begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)}, \end{align*}
\begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)}, \end{align*}
then there is a positive constant 
 $C_{11}$
 such that
$C_{11}$
 such that
 \begin{align} \|P(\cdot, t)\|_{L^{N+2}(\Omega )}\leq C_{11},\ t\in (0,T_{max}). \end{align}
\begin{align} \|P(\cdot, t)\|_{L^{N+2}(\Omega )}\leq C_{11},\ t\in (0,T_{max}). \end{align}
Proof. Let 
 $n=N+2$
 and define an auxiliary function
$n=N+2$
 and define an auxiliary function 
 $\varphi (Q)=e^{(\sigma Q)^2}$
 for
$\varphi (Q)=e^{(\sigma Q)^2}$
 for 
 $0\leq Q(x,t)\leq C_1$
, where
$0\leq Q(x,t)\leq C_1$
, where 
 $\sigma$
 satisfies
$\sigma$
 satisfies
 \begin{equation*}\sigma =\frac {1}{C_1(d_1+d_2)}\sqrt {\frac {d_1d_2(n-1)}{6n}}\gt 0.\end{equation*}
\begin{equation*}\sigma =\frac {1}{C_1(d_1+d_2)}\sqrt {\frac {d_1d_2(n-1)}{6n}}\gt 0.\end{equation*}
Accordingly, multiplying 
 $P-$
equation by
$P-$
equation by 
 $P^{n-1}\varphi (Q)$
 and integrating it over
$P^{n-1}\varphi (Q)$
 and integrating it over 
 $\Omega$
, one yields
$\Omega$
, one yields
 \begin{align*} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx\\[3pt]=&\int _\Omega P^{n-1}\varphi (Q)P_tdx+\frac {1}{n}\int _\Omega P^n\varphi ^{\prime }(Q)Q_tdx \\[3pt] =&d_1\int _\Omega P^{n-1}\varphi (Q)\Delta Pdx-\int _\Omega P^{n-1}\varphi (Q)\nabla (\xi \phi (P)\nabla Q)dx\\[3pt]&+\int _\Omega P^{n-1}\varphi (Q)\left (\frac {bc P}{cP+eQ}+dPQ-\alpha P\right )dx\\[3pt]&+\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime }(Q)\Delta Qdx+\frac {1}{n}\int _\Omega P^n\varphi ^{\prime }(Q)\left [\frac {beQ}{cP+eQ}-dPQ-(\beta +h)Q\right ]dx\\[3pt]\leq &-d_1(n-1)\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx-d_1\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx\\[3pt]&+\xi \int _\Omega P^{n-1}\varphi ^{\prime }(Q)\phi (P)|\nabla Q|^2dx+\xi (n-1)\int _\Omega P^{n-2}\varphi (Q)\phi (P)\nabla P\nabla Qdx \\[3pt]&+b\int _\Omega P^{n-1}\varphi (Q)dx+dC_1\int _\Omega P^n\varphi (Q)dx-\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime \prime }(Q)|\nabla Q|^2dx \\[3pt]&-d_2\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx+\frac {2b\sigma ^2 C_1}{n}\int _\Omega P^{n-1}\varphi (Q) dx. \end{align*}
\begin{align*} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx\\[3pt]=&\int _\Omega P^{n-1}\varphi (Q)P_tdx+\frac {1}{n}\int _\Omega P^n\varphi ^{\prime }(Q)Q_tdx \\[3pt] =&d_1\int _\Omega P^{n-1}\varphi (Q)\Delta Pdx-\int _\Omega P^{n-1}\varphi (Q)\nabla (\xi \phi (P)\nabla Q)dx\\[3pt]&+\int _\Omega P^{n-1}\varphi (Q)\left (\frac {bc P}{cP+eQ}+dPQ-\alpha P\right )dx\\[3pt]&+\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime }(Q)\Delta Qdx+\frac {1}{n}\int _\Omega P^n\varphi ^{\prime }(Q)\left [\frac {beQ}{cP+eQ}-dPQ-(\beta +h)Q\right ]dx\\[3pt]\leq &-d_1(n-1)\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx-d_1\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx\\[3pt]&+\xi \int _\Omega P^{n-1}\varphi ^{\prime }(Q)\phi (P)|\nabla Q|^2dx+\xi (n-1)\int _\Omega P^{n-2}\varphi (Q)\phi (P)\nabla P\nabla Qdx \\[3pt]&+b\int _\Omega P^{n-1}\varphi (Q)dx+dC_1\int _\Omega P^n\varphi (Q)dx-\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime \prime }(Q)|\nabla Q|^2dx \\[3pt]&-d_2\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx+\frac {2b\sigma ^2 C_1}{n}\int _\Omega P^{n-1}\varphi (Q) dx. \end{align*}
Recalling the assumption 
 $\phi (P)\leq c_0P$
 in (H2), we have
$\phi (P)\leq c_0P$
 in (H2), we have
 \begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+d_1(n-1)\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx+\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime \prime }(Q)|\nabla Q|^2dx \\[3pt] \nonumber \leq &-(d_1+d_2)\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx+c_0\xi \int _\Omega P^{n}\varphi ^{\prime }(Q)|\nabla Q|^2dx\\[3pt]&\nonumber +c_0\xi (n-1)\int _\Omega P^{n-1}\varphi (Q)\nabla P\nabla Qdx +dC_1\int _\Omega P^n\varphi (Q)dx \\[3pt]&\nonumber +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
\begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+d_1(n-1)\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx+\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime \prime }(Q)|\nabla Q|^2dx \\[3pt] \nonumber \leq &-(d_1+d_2)\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx+c_0\xi \int _\Omega P^{n}\varphi ^{\prime }(Q)|\nabla Q|^2dx\\[3pt]&\nonumber +c_0\xi (n-1)\int _\Omega P^{n-1}\varphi (Q)\nabla P\nabla Qdx +dC_1\int _\Omega P^n\varphi (Q)dx \\[3pt]&\nonumber +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
Now, by employing Young’s inequality and note that 
 $P^{n-1}=P^{\frac {n-2}{2}}P^{\frac {n}{2}}$
, one obtains
$P^{n-1}=P^{\frac {n-2}{2}}P^{\frac {n}{2}}$
, one obtains
 \begin{align*} &-(d_1+d_2)\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx \\[3pt] \leq &(d_1+d_2)\int _\Omega P^{n-1}\varphi ^{\prime }(Q)|\nabla P||\nabla Q|dx \\[3pt] =&{\int _\Omega \left (\sqrt {\frac {(n-1)d_1\varphi (Q)}{2}}P^{\frac {n-2}{2}}|\nabla P|\right )\left (\frac {\sqrt {2}(d_1+d_2)}{\sqrt {(n-1)d_1\varphi (Q)}}P^{\frac {n}{2}}\varphi ^{\prime }(Q)|\nabla Q|\right )dx} \\[3pt] \leq &\frac {(n-1)d_1}{4}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx +\frac {(d_1+d_2)^2}{(n-1)d_1}\int _\Omega \frac {P^n\varphi ^{\prime 2}(Q)}{\varphi (Q)}|\nabla Q|^2dx \end{align*}
\begin{align*} &-(d_1+d_2)\int _\Omega P^{n-1}\varphi ^{\prime }(Q)\nabla P\nabla Qdx \\[3pt] \leq &(d_1+d_2)\int _\Omega P^{n-1}\varphi ^{\prime }(Q)|\nabla P||\nabla Q|dx \\[3pt] =&{\int _\Omega \left (\sqrt {\frac {(n-1)d_1\varphi (Q)}{2}}P^{\frac {n-2}{2}}|\nabla P|\right )\left (\frac {\sqrt {2}(d_1+d_2)}{\sqrt {(n-1)d_1\varphi (Q)}}P^{\frac {n}{2}}\varphi ^{\prime }(Q)|\nabla Q|\right )dx} \\[3pt] \leq &\frac {(n-1)d_1}{4}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx +\frac {(d_1+d_2)^2}{(n-1)d_1}\int _\Omega \frac {P^n\varphi ^{\prime 2}(Q)}{\varphi (Q)}|\nabla Q|^2dx \end{align*}
and, similarly, one yields
 \begin{align*} &c_0\xi (n-1)\int _\Omega P^{n-1}\varphi (Q)\nabla P\nabla Qdx \\[3pt] \leq &\frac {(n-1)d_1}{4}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx +\frac {c_0^2\xi ^2(n-1)}{d_1}\int _\Omega P^n\varphi (Q)|\nabla Q|^2dx. \end{align*}
\begin{align*} &c_0\xi (n-1)\int _\Omega P^{n-1}\varphi (Q)\nabla P\nabla Qdx \\[3pt] \leq &\frac {(n-1)d_1}{4}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx +\frac {c_0^2\xi ^2(n-1)}{d_1}\int _\Omega P^n\varphi (Q)|\nabla Q|^2dx. \end{align*}
Consequently, putting these into (15), we get
 \begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx+\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime \prime }(Q)|\nabla Q|^2dx\\[3pt] \nonumber \leq &\frac {(d_1+d_2)^2}{(n-1)d_1}\int _\Omega \frac {P^n\varphi ^{\prime 2}(Q)}{\varphi (Q)}|\nabla Q|^2dx+c_0\xi \int _\Omega P^n\varphi ^{\prime }(Q)|\nabla Q|^2dx\\[3pt]&\nonumber +\frac {c_0^2\xi ^2(n-1)}{d_1}\int _\Omega P^n\varphi (Q)|\nabla Q|^2dx +dC_1\int _\Omega P^n\varphi (Q)dx \\[3pt]&\nonumber +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
\begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx+\frac { d_2}{n}\int _\Omega P^n\varphi ^{\prime \prime }(Q)|\nabla Q|^2dx\\[3pt] \nonumber \leq &\frac {(d_1+d_2)^2}{(n-1)d_1}\int _\Omega \frac {P^n\varphi ^{\prime 2}(Q)}{\varphi (Q)}|\nabla Q|^2dx+c_0\xi \int _\Omega P^n\varphi ^{\prime }(Q)|\nabla Q|^2dx\\[3pt]&\nonumber +\frac {c_0^2\xi ^2(n-1)}{d_1}\int _\Omega P^n\varphi (Q)|\nabla Q|^2dx +dC_1\int _\Omega P^n\varphi (Q)dx \\[3pt]&\nonumber +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
Let
 \begin{align*} &\omega _1(Q)=\frac {(d_1+d_2)^2}{(n-1)d_1}\frac {\varphi ^{\prime 2}(Q)}{\varphi (Q)},\ \omega _2(Q)=c_0\xi \varphi ^{\prime }(Q),\\[3pt] &\omega _3(Q)=\frac {c_0^2\xi ^2(n-1)}{d_1}\varphi (Q),\ \omega _4(Q)=\frac { d_2}{n}\varphi ^{\prime \prime }(Q). \end{align*}
\begin{align*} &\omega _1(Q)=\frac {(d_1+d_2)^2}{(n-1)d_1}\frac {\varphi ^{\prime 2}(Q)}{\varphi (Q)},\ \omega _2(Q)=c_0\xi \varphi ^{\prime }(Q),\\[3pt] &\omega _3(Q)=\frac {c_0^2\xi ^2(n-1)}{d_1}\varphi (Q),\ \omega _4(Q)=\frac { d_2}{n}\varphi ^{\prime \prime }(Q). \end{align*}
As a consequence, (16) becomes
 \begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx+\int _\Omega P^n\omega _4(Q)|\nabla Q|^2dx\\[3pt] \nonumber \leq &\int _\Omega P^n\omega _1(Q)|\nabla Q|^2dx+\int _\Omega P^n\omega _2(Q)|\nabla Q|^2dx+\int _\Omega P^n\omega _3(Q)|\nabla Q|^2dx \\[3pt]&\nonumber +dC_1\int _\Omega P^n\varphi (Q)dx +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
\begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx+\int _\Omega P^n\omega _4(Q)|\nabla Q|^2dx\\[3pt] \nonumber \leq &\int _\Omega P^n\omega _1(Q)|\nabla Q|^2dx+\int _\Omega P^n\omega _2(Q)|\nabla Q|^2dx+\int _\Omega P^n\omega _3(Q)|\nabla Q|^2dx \\[3pt]&\nonumber +dC_1\int _\Omega P^n\varphi (Q)dx +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
Recalling that 
 $\varphi (Q)=e^{(\sigma Q)^2}$
 for
$\varphi (Q)=e^{(\sigma Q)^2}$
 for 
 $0\leq Q(x,t)\leq C_1$
, one obtains
$0\leq Q(x,t)\leq C_1$
, one obtains
 \begin{align*} &\omega _1(Q)=\frac {4\sigma ^4(d_1+d_2)^2Q^2}{(n-1)d_1}\varphi (Q),\ \omega _2(Q)=2\sigma ^2Qc_0\xi \varphi (Q),\\[3pt] &\omega _3(Q)=\frac {c_0^2\xi ^2(n-1)}{d_1}\varphi (Q),\ \omega _4(Q)=\frac { d_2}{n}(2\sigma ^2\varphi (Q)+4\sigma ^4Q^2\varphi (Q)). \end{align*}
\begin{align*} &\omega _1(Q)=\frac {4\sigma ^4(d_1+d_2)^2Q^2}{(n-1)d_1}\varphi (Q),\ \omega _2(Q)=2\sigma ^2Qc_0\xi \varphi (Q),\\[3pt] &\omega _3(Q)=\frac {c_0^2\xi ^2(n-1)}{d_1}\varphi (Q),\ \omega _4(Q)=\frac { d_2}{n}(2\sigma ^2\varphi (Q)+4\sigma ^4Q^2\varphi (Q)). \end{align*}
For 
 $0\leq Q(x,t)\leq C_1$
, we take
$0\leq Q(x,t)\leq C_1$
, we take
 \begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0nC_1(d_1+d_2)}. \end{align*}
\begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0nC_1(d_1+d_2)}. \end{align*}
Using this approach, we have
 \begin{align*} &\frac {3\omega _1(Q)}{\omega _4(Q)}\leq \frac {6n\sigma ^2(d_1+d_2)^2Q^2}{(n-1)d_1d_2}\leq \frac {6n\sigma ^2(d_1+d_2)^2C_1^2}{(n-1)d_1d_2}=1,\\[3pt] &\frac {3\omega _2(Q)}{\omega _4(Q)}\leq \frac {d_1}{d_1+d_2}\lt 1, \end{align*}
\begin{align*} &\frac {3\omega _1(Q)}{\omega _4(Q)}\leq \frac {6n\sigma ^2(d_1+d_2)^2Q^2}{(n-1)d_1d_2}\leq \frac {6n\sigma ^2(d_1+d_2)^2C_1^2}{(n-1)d_1d_2}=1,\\[3pt] &\frac {3\omega _2(Q)}{\omega _4(Q)}\leq \frac {d_1}{d_1+d_2}\lt 1, \end{align*}
and
 \begin{align*} \frac {3\omega _3(Q)}{\omega _4(Q)}\leq \frac {3c_0^2\xi ^2n(n-1)}{2d_1d_2\sigma ^2}\leq 1. \end{align*}
\begin{align*} \frac {3\omega _3(Q)}{\omega _4(Q)}\leq \frac {3c_0^2\xi ^2n(n-1)}{2d_1d_2\sigma ^2}\leq 1. \end{align*}
Therefore, one has
 \begin{align*} \int _\Omega (\omega _1(Q)+\omega _2(Q)+\omega _3(Q))P^n|\nabla Q|^2dx \leq \int _\Omega \omega _4(Q) P^n|\nabla Q|^2dx. \end{align*}
\begin{align*} \int _\Omega (\omega _1(Q)+\omega _2(Q)+\omega _3(Q))P^n|\nabla Q|^2dx \leq \int _\Omega \omega _4(Q) P^n|\nabla Q|^2dx. \end{align*}
As such, (17) takes the form
 \begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx \\[3pt] &\nonumber \leq dC_1\int _\Omega P^n\varphi (Q)dx +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
\begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx \\[3pt] &\nonumber \leq dC_1\int _\Omega P^n\varphi (Q)dx +\left (b+\frac {2b\sigma ^2 C_1}{n}\right )\int _\Omega P^{n-1}\varphi (Q) dx. \end{align}
In light of Lemma2.3, we get
 \begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx \\[3pt] &\nonumber \leq (dC_1+C_{12})\int _\Omega P^n\varphi (Q)dx+C_{13}. \end{align}
\begin{align} &\frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx+\frac {d_1(n-1)}{2}\int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx \\[3pt] &\nonumber \leq (dC_1+C_{12})\int _\Omega P^n\varphi (Q)dx+C_{13}. \end{align}
On the other hand, owing to 
 $\varphi (Q)=e^{(\sigma Q)^2}$
, so
$\varphi (Q)=e^{(\sigma Q)^2}$
, so 
 $\varphi (Q)\leq e^{\sigma ^2C_1^2}$
 for
$\varphi (Q)\leq e^{\sigma ^2C_1^2}$
 for 
 $0\leq Q(x,t)\leq C_1$
. Thereby, by utilizing the first two inequalities on page 55 of [Reference Horstmann and Winkler15] and (ii) of Lemma2.1, we get
$0\leq Q(x,t)\leq C_1$
. Thereby, by utilizing the first two inequalities on page 55 of [Reference Horstmann and Winkler15] and (ii) of Lemma2.1, we get
 \begin{align*} \int _\Omega P^n\varphi (Q)dx\leq & e^{\sigma ^2C_1^2}\int _\Omega P^ndx=e^{\sigma ^2C_1^2}\left \|P^{\frac {n}{2}}\right \|_{L^2(\Omega )}^2 \\[3pt] \leq &e^{\sigma ^2C_1^2}C\left \|P^{\frac {n}{2}}\right \|_{W^{1,2}(\Omega )}^{2\nu } \left \|P^{\frac {n}{2}}\right \|_{L^{\frac {2}{n}}(\Omega )}^{2(1-\nu )} \\[3pt] \leq &e^{\sigma ^2C_1^2}C\left (\left \|\nabla P^{\frac {n}{2}}\right \|_{L^{2}(\Omega )}+\left \|P^{\frac {n}{2}}\right \|_{L^{\frac {2}{n}}(\Omega )}\right )^{2\nu } \left \|P^{\frac {n}{2}}\right \|_{L^{\frac {2}{n}}(\Omega )}^{2(1-\nu )} \\[3pt] =&e^{\sigma ^2C_1^2}C\left (\left \|\nabla P^{\frac {n}{2}}\right \|_{L^{2}(\Omega )}+\left \|P\right \|_{L^{1}(\Omega )}^{\frac {n}{2}}\right )^{2\nu } \left \|P\right \|_{L^{1}(\Omega )}^{n(1-\nu )} \\[3pt] \leq &C_{14}\left (\left \|\nabla P^{\frac {n}{2}}\right \|_{L^{2}(\Omega )}^2+1\right )^{\nu } \end{align*}
\begin{align*} \int _\Omega P^n\varphi (Q)dx\leq & e^{\sigma ^2C_1^2}\int _\Omega P^ndx=e^{\sigma ^2C_1^2}\left \|P^{\frac {n}{2}}\right \|_{L^2(\Omega )}^2 \\[3pt] \leq &e^{\sigma ^2C_1^2}C\left \|P^{\frac {n}{2}}\right \|_{W^{1,2}(\Omega )}^{2\nu } \left \|P^{\frac {n}{2}}\right \|_{L^{\frac {2}{n}}(\Omega )}^{2(1-\nu )} \\[3pt] \leq &e^{\sigma ^2C_1^2}C\left (\left \|\nabla P^{\frac {n}{2}}\right \|_{L^{2}(\Omega )}+\left \|P^{\frac {n}{2}}\right \|_{L^{\frac {2}{n}}(\Omega )}\right )^{2\nu } \left \|P^{\frac {n}{2}}\right \|_{L^{\frac {2}{n}}(\Omega )}^{2(1-\nu )} \\[3pt] =&e^{\sigma ^2C_1^2}C\left (\left \|\nabla P^{\frac {n}{2}}\right \|_{L^{2}(\Omega )}+\left \|P\right \|_{L^{1}(\Omega )}^{\frac {n}{2}}\right )^{2\nu } \left \|P\right \|_{L^{1}(\Omega )}^{n(1-\nu )} \\[3pt] \leq &C_{14}\left (\left \|\nabla P^{\frac {n}{2}}\right \|_{L^{2}(\Omega )}^2+1\right )^{\nu } \end{align*}
where 
 $C$
 is positive constant and
$C$
 is positive constant and 
 $ \nu =\frac {\frac {nN}{2}-\frac {N}{2}}{\frac {nN}{2}+1-\frac {N}{2}}\in (0,1).$
 Accordingly, for
$ \nu =\frac {\frac {nN}{2}-\frac {N}{2}}{\frac {nN}{2}+1-\frac {N}{2}}\in (0,1).$
 Accordingly, for 
 $n\gt 2$
 and
$n\gt 2$
 and 
 $0\lt \nu \lt 1$
, we get
$0\lt \nu \lt 1$
, we get
 \begin{align} \int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx\geq \int _\Omega P^{n-2}|\nabla P|^2dx{=\frac {4}{n^2}\int _\Omega |\nabla P^{\frac {n}{2}}|^2dx}\geq \frac {4C_{14}^{-\frac {1}{\nu }}}{n^2} \left (\int _\Omega P^n\varphi (Q)dx\right )^{\frac {1}{\nu }}-\frac {4}{n^2}. \end{align}
\begin{align} \int _\Omega P^{n-2}\varphi (Q)|\nabla P|^2dx\geq \int _\Omega P^{n-2}|\nabla P|^2dx{=\frac {4}{n^2}\int _\Omega |\nabla P^{\frac {n}{2}}|^2dx}\geq \frac {4C_{14}^{-\frac {1}{\nu }}}{n^2} \left (\int _\Omega P^n\varphi (Q)dx\right )^{\frac {1}{\nu }}-\frac {4}{n^2}. \end{align}
Thereby, putting (20) into (19), we have
 \begin{align*} \frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx \leq (dC_1+C_{12})\int _\Omega P^n\varphi (Q)dx -\frac {2d_1(n-1)C_{14}^{-\frac {1}{\nu }}}{n^2} \left (\int _\Omega P^n\varphi (Q)dx\right )^{\frac {1}{\nu }}+\frac {2d_1(n-1)}{n^2}. \end{align*}
\begin{align*} \frac {1}{n}\frac {d}{dt}\int _\Omega P^n\varphi (Q)dx \leq (dC_1+C_{12})\int _\Omega P^n\varphi (Q)dx -\frac {2d_1(n-1)C_{14}^{-\frac {1}{\nu }}}{n^2} \left (\int _\Omega P^n\varphi (Q)dx\right )^{\frac {1}{\nu }}+\frac {2d_1(n-1)}{n^2}. \end{align*}
By using Lemma2.2, there is a 
 $C_{15}\gt 0$
 such that
$C_{15}\gt 0$
 such that
 \begin{align*} \int _\Omega P^n\varphi (Q)dx\leq C_{15}. \end{align*}
\begin{align*} \int _\Omega P^n\varphi (Q)dx\leq C_{15}. \end{align*}
This implies
 \begin{align*} \|P(\cdot, t)\|_{L^n(\Omega )}\leq C_{11} \end{align*}
\begin{align*} \|P(\cdot, t)\|_{L^n(\Omega )}\leq C_{11} \end{align*}
is valid. We finish the proof.
 The following result means that the solution 
 $P(x,t)$
 admits the
$P(x,t)$
 admits the 
 $L^\infty$
-bound.
$L^\infty$
-bound.
Lemma 2.6. 
Suppose that 
 $\Omega \subset \mathbb {R}^N$
 with the smooth boundary
$\Omega \subset \mathbb {R}^N$
 with the smooth boundary 
 $\partial \Omega$
, the initial conditions
$\partial \Omega$
, the initial conditions 
 $(P_0(x),Q_{0}(x))\in [W^{1,p}(\Omega )]^2$
 with
$(P_0(x),Q_{0}(x))\in [W^{1,p}(\Omega )]^2$
 with 
 $p\gt N$
 and
$p\gt N$
 and 
 $P_0(x)\geq 0,\ Q_{0}(x)\geq 0$
 for
$P_0(x)\geq 0,\ Q_{0}(x)\geq 0$
 for 
 $x\in \overline {\Omega }$
. If
$x\in \overline {\Omega }$
. If
 \begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)}, \end{align*}
\begin{align*} 0\lt \xi \leq \frac {d_1d_2}{3c_0(2+N)C_1(d_1+d_2)}, \end{align*}
then there is a positive constant 
 $C_{16}$
 such that
$C_{16}$
 such that
 \begin{align} \|P(\cdot, t)\|_{L^{\infty }(\Omega )}\leq C_{16},\ t\in (0,T_{max}). \end{align}
\begin{align} \|P(\cdot, t)\|_{L^{\infty }(\Omega )}\leq C_{16},\ t\in (0,T_{max}). \end{align}
Proof. Rewrite 
 $Q-$
equation of (1) as follows.
$Q-$
equation of (1) as follows.
 \begin{align*} \frac {\partial Q}{\partial t}=d_2\Delta Q-Q+Q\left (\frac {be}{cP+eQ}-dP-\beta -h\right )+Q. \end{align*}
\begin{align*} \frac {\partial Q}{\partial t}=d_2\Delta Q-Q+Q\left (\frac {be}{cP+eQ}-dP-\beta -h\right )+Q. \end{align*}
Then, we can compute
 \begin{align*} Q(\cdot, t)=e^{-t({-}d_2\Delta +1)}Q_0+\int _0^te^{-(t-s)({-}d_2\Delta +1)} \left [Q\left (\frac {be}{cP+eQ}-dP-\beta -h\right )+Q\right ]ds. \end{align*}
\begin{align*} Q(\cdot, t)=e^{-t({-}d_2\Delta +1)}Q_0+\int _0^te^{-(t-s)({-}d_2\Delta +1)} \left [Q\left (\frac {be}{cP+eQ}-dP-\beta -h\right )+Q\right ]ds. \end{align*}
Let 
 $\tau \in (0,T_{max}),0\lt \tau \lt 1,q\gt N$
,
$\tau \in (0,T_{max}),0\lt \tau \lt 1,q\gt N$
, 
 $\frac {1}{2}(1+\frac {N}{q})\lt k\lt 1$
. Then, using (11), (12) in Lemma2.4 and (14) in Lemma2.5, one gets
$\frac {1}{2}(1+\frac {N}{q})\lt k\lt 1$
. Then, using (11), (12) in Lemma2.4 and (14) in Lemma2.5, one gets
 \begin{align*} &\|Q(\cdot, t)\|_{W^{1,\infty }(\Omega )}\\[3pt] &\leq C_8{\left \|({-}d_2\Delta +1)^k {\left [e^{-t({-}d_2\Delta +1)}Q_0+\int _0^te^{-(t-s)({-}d_2\Delta +1)}(b+(dP+\beta +h+1)C_1)ds\right ]}\right \|}_{L^{q}(\Omega )}\\[3pt]&\leq C_8C_9t^{-k}e^{-\gamma t}\|Q_0\|_{L^{q}(\Omega )}+C_8C_9\int _0^t(t-s)^{-k}e^{-\gamma (t-s)}(b+(d\|P\|_{L^{q}(\Omega )}+\beta +h+1)C_1)ds \\[3pt]&\leq C_{16}t^{-k}+C_{17}\int _0^t(t-s)^{-k}e^{-\gamma (t-s)}ds \\[3pt]&\leq C_{16}t^{-k}+C_{17}\int _0^\infty {\varrho ^{-k}}e^{-\gamma \varrho }d\varrho \\[3pt]&\leq C_{16}\tau ^{-k}+C_{17}\Gamma (1-k)\,:\!=\, K(\tau ),\ t\in (\tau, T_{max}), \end{align*}
\begin{align*} &\|Q(\cdot, t)\|_{W^{1,\infty }(\Omega )}\\[3pt] &\leq C_8{\left \|({-}d_2\Delta +1)^k {\left [e^{-t({-}d_2\Delta +1)}Q_0+\int _0^te^{-(t-s)({-}d_2\Delta +1)}(b+(dP+\beta +h+1)C_1)ds\right ]}\right \|}_{L^{q}(\Omega )}\\[3pt]&\leq C_8C_9t^{-k}e^{-\gamma t}\|Q_0\|_{L^{q}(\Omega )}+C_8C_9\int _0^t(t-s)^{-k}e^{-\gamma (t-s)}(b+(d\|P\|_{L^{q}(\Omega )}+\beta +h+1)C_1)ds \\[3pt]&\leq C_{16}t^{-k}+C_{17}\int _0^t(t-s)^{-k}e^{-\gamma (t-s)}ds \\[3pt]&\leq C_{16}t^{-k}+C_{17}\int _0^\infty {\varrho ^{-k}}e^{-\gamma \varrho }d\varrho \\[3pt]&\leq C_{16}\tau ^{-k}+C_{17}\Gamma (1-k)\,:\!=\, K(\tau ),\ t\in (\tau, T_{max}), \end{align*}
where 
 $\Gamma (\cdot )$
 is a Gamma function and
$\Gamma (\cdot )$
 is a Gamma function and 
 $\Gamma (1-k)\gt 0$
 due to
$\Gamma (1-k)\gt 0$
 due to 
 $\frac {1}{2}(1+\frac {N}{q})\lt k\lt 1$
. Therefore, we get
$\frac {1}{2}(1+\frac {N}{q})\lt k\lt 1$
. Therefore, we get
 \begin{align} \|\nabla Q(\cdot, t)\|_{L^{\infty }(\Omega )}\leq K(\tau ),\ t\in (\tau, T_{max}). \end{align}
\begin{align} \|\nabla Q(\cdot, t)\|_{L^{\infty }(\Omega )}\leq K(\tau ),\ t\in (\tau, T_{max}). \end{align}
Now, the variation of the constant formula to the 
 $P-$
equation of (1) shows
$P-$
equation of (1) shows
 \begin{align*} P(\cdot, t)=&e^{-t({-}d_1\Delta +1)}P_{0}-\xi \int _0^te^{-(t-s)({-}d_1\Delta +1)}\nabla (\phi (P)\nabla Q)ds \\[3pt]&+\int _0^te^{-(t-s)({-}d_1\Delta +1)}\left [P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )+P\right ]ds. \end{align*}
\begin{align*} P(\cdot, t)=&e^{-t({-}d_1\Delta +1)}P_{0}-\xi \int _0^te^{-(t-s)({-}d_1\Delta +1)}\nabla (\phi (P)\nabla Q)ds \\[3pt]&+\int _0^te^{-(t-s)({-}d_1\Delta +1)}\left [P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )+P\right ]ds. \end{align*}
Let
 \begin{align*} P_1(\cdot, t)=e^{-t({-}d_1\Delta +1)}P_{0},P_2(\cdot, t) =-\xi \int _0^te^{-(t-s)({-}d_1\Delta +1)}\nabla (\phi (P)\nabla Q)ds, \end{align*}
\begin{align*} P_1(\cdot, t)=e^{-t({-}d_1\Delta +1)}P_{0},P_2(\cdot, t) =-\xi \int _0^te^{-(t-s)({-}d_1\Delta +1)}\nabla (\phi (P)\nabla Q)ds, \end{align*}
and
 \begin{align*}P_3(\cdot, t)=\int _0^te^{-(t-s)({-}d_1\Delta +1)}\left [P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )+P\right ]ds. \end{align*}
\begin{align*}P_3(\cdot, t)=\int _0^te^{-(t-s)({-}d_1\Delta +1)}\left [P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )+P\right ]ds. \end{align*}
Therefore, 
 $P(\cdot, t)=P_1(\cdot, t)+P_2(\cdot, t)+P_3(\cdot, t)$
. That is to say, we must give
$P(\cdot, t)=P_1(\cdot, t)+P_2(\cdot, t)+P_3(\cdot, t)$
. That is to say, we must give 
 $L^\infty$
-bounds of
$L^\infty$
-bounds of 
 $P_1(\cdot, t),P_2(\cdot, t)$
 and
$P_1(\cdot, t),P_2(\cdot, t)$
 and 
 $P_3(\cdot, t)$
 to obtain
$P_3(\cdot, t)$
 to obtain 
 $\|P(\cdot, t)\|_{L^{\infty }(\Omega )}$
.
$\|P(\cdot, t)\|_{L^{\infty }(\Omega )}$
.
 Now, for 
 $P_1(\cdot, t)$
, by using (11) and (12), we have
$P_1(\cdot, t)$
, by using (11) and (12), we have
 \begin{align*} \|P_1(\cdot, t)\|_{L^{\infty }(\Omega )}=&\|e^{-t({-}d_1\Delta +1)}P_{0}\|_{L^{\infty }(\Omega )} \\[3pt] \leq & C_8\|({-}d_1\Delta +1)^k e^{-t({-}d_1\Delta +1)}P_{0}\|_{L^{q}(\Omega )} \\[3pt] \leq &C_8C_9t^{-k}e^{-\gamma t}\|P_{0}\|_{L^{q}(\Omega )} \\[3pt] \leq &C_8C_9{\tau ^{-k}}e^{-\gamma t}\|P_{0}\|_{L^{q}(\Omega )} \\[3pt] \leq &C_{18}\|P_{0}\|_{L^{\infty }(\Omega )},\ \ t\in (\tau, T_{max}) \end{align*}
\begin{align*} \|P_1(\cdot, t)\|_{L^{\infty }(\Omega )}=&\|e^{-t({-}d_1\Delta +1)}P_{0}\|_{L^{\infty }(\Omega )} \\[3pt] \leq & C_8\|({-}d_1\Delta +1)^k e^{-t({-}d_1\Delta +1)}P_{0}\|_{L^{q}(\Omega )} \\[3pt] \leq &C_8C_9t^{-k}e^{-\gamma t}\|P_{0}\|_{L^{q}(\Omega )} \\[3pt] \leq &C_8C_9{\tau ^{-k}}e^{-\gamma t}\|P_{0}\|_{L^{q}(\Omega )} \\[3pt] \leq &C_{18}\|P_{0}\|_{L^{\infty }(\Omega )},\ \ t\in (\tau, T_{max}) \end{align*}
for 
 $m=0,p=\infty, 0\lt \tau \lt 1,{\frac {N}{2q}\lt k\lt 1},q\gt N$
 and
$m=0,p=\infty, 0\lt \tau \lt 1,{\frac {N}{2q}\lt k\lt 1},q\gt N$
 and 
 $\gamma \gt 0$
.
$\gamma \gt 0$
.
 For 
 $P_2(\cdot, t)$
, one takes
$P_2(\cdot, t)$
, one takes 
 $\frac {N}{2q}\lt k\lt \frac {1}{2}$
, so
$\frac {N}{2q}\lt k\lt \frac {1}{2}$
, so 
 $0\lt \varepsilon \lt 1/2-k$
. Then, by employing (11)–(13) and (22), we obtain
$0\lt \varepsilon \lt 1/2-k$
. Then, by employing (11)–(13) and (22), we obtain
 \begin{align*} \|P_2(\cdot, t)\|_{L^{\infty }(\Omega )}\leq & C_8{\left \|({-}d_1\Delta +1)^k \xi \int _0^te^{-(t-s)({-}d_1\Delta +1)}|\nabla (\phi (P)\nabla Q)|ds\right \|}_{L^{q}(\Omega )} \\[3pt] \leq &\xi C_{8} \int _0^t{\left \|({-}d_1\Delta +1)^k e^{-(t-s)({-}d_1\Delta +1)}|\nabla (\phi (P)\nabla Q)|\right \|}_{L^{q}(\Omega )}ds \\[3pt] \leq &C_{19} \int _0^t(t-s)^{-k-\varepsilon -1/2} e^{-(\mu +1)(t-s)}ds \\[3pt] \leq &C_{19} \int _0^\infty \varrho ^{-k-\varepsilon -1/2} e^{-(\mu +1)\varrho }d\varrho \\[3pt] \leq &C_{19} \Gamma (1/2-k-\varepsilon ),\ \ t\in (\tau, T_{max}), \end{align*}
\begin{align*} \|P_2(\cdot, t)\|_{L^{\infty }(\Omega )}\leq & C_8{\left \|({-}d_1\Delta +1)^k \xi \int _0^te^{-(t-s)({-}d_1\Delta +1)}|\nabla (\phi (P)\nabla Q)|ds\right \|}_{L^{q}(\Omega )} \\[3pt] \leq &\xi C_{8} \int _0^t{\left \|({-}d_1\Delta +1)^k e^{-(t-s)({-}d_1\Delta +1)}|\nabla (\phi (P)\nabla Q)|\right \|}_{L^{q}(\Omega )}ds \\[3pt] \leq &C_{19} \int _0^t(t-s)^{-k-\varepsilon -1/2} e^{-(\mu +1)(t-s)}ds \\[3pt] \leq &C_{19} \int _0^\infty \varrho ^{-k-\varepsilon -1/2} e^{-(\mu +1)\varrho }d\varrho \\[3pt] \leq &C_{19} \Gamma (1/2-k-\varepsilon ),\ \ t\in (\tau, T_{max}), \end{align*}
where 
 $\Gamma (1/2-k-\varepsilon )\gt 0$
 due to
$\Gamma (1/2-k-\varepsilon )\gt 0$
 due to 
 $0\lt \varepsilon \lt 1/2-k$
.
$0\lt \varepsilon \lt 1/2-k$
.
 For 
 $P_3(\cdot, t)$
, in a similar approach, we have
$P_3(\cdot, t)$
, in a similar approach, we have
 \begin{align*} \|P_3(\cdot, t)\|_{L^{\infty }(\Omega )}\leq & C_{8} {\left \|({-}d_1\Delta +1)^k \int _0^te^{-(t-s)({-}d_1\Delta +1)}(b+(dC_1+1+\alpha )P)ds\right \|}_{L^{q}(\Omega )} \\[3pt] \leq & C_{8} \int _0^t{\left \|({-}d_1\Delta +1)^k e^{-(t-s)({-}d_1\Delta +1)}(b+(dC_1+1+\alpha )P)\right \|}_{L^{q}(\Omega )}ds \\[3pt] \leq &C_{8}C_{9} \int _0^t(t-s)^{-k} e^{-(t-s)\gamma }(b+(dC_1+1+\alpha )\left \|P\right \|_{L^{q}(\Omega )})ds \\[3pt] \leq & C_{20} \int _0^t(t-s)^{-k} e^{-(t-s)\gamma }ds \\[3pt] \leq & C_{20} \int _0^\infty \varrho ^{-k} e^{-\varrho \gamma }d\varrho \\[3pt] \leq & C_{20} \Gamma (1-k),\ \ t\in (\tau, T_{max}), \end{align*}
\begin{align*} \|P_3(\cdot, t)\|_{L^{\infty }(\Omega )}\leq & C_{8} {\left \|({-}d_1\Delta +1)^k \int _0^te^{-(t-s)({-}d_1\Delta +1)}(b+(dC_1+1+\alpha )P)ds\right \|}_{L^{q}(\Omega )} \\[3pt] \leq & C_{8} \int _0^t{\left \|({-}d_1\Delta +1)^k e^{-(t-s)({-}d_1\Delta +1)}(b+(dC_1+1+\alpha )P)\right \|}_{L^{q}(\Omega )}ds \\[3pt] \leq &C_{8}C_{9} \int _0^t(t-s)^{-k} e^{-(t-s)\gamma }(b+(dC_1+1+\alpha )\left \|P\right \|_{L^{q}(\Omega )})ds \\[3pt] \leq & C_{20} \int _0^t(t-s)^{-k} e^{-(t-s)\gamma }ds \\[3pt] \leq & C_{20} \int _0^\infty \varrho ^{-k} e^{-\varrho \gamma }d\varrho \\[3pt] \leq & C_{20} \Gamma (1-k),\ \ t\in (\tau, T_{max}), \end{align*}
where 
 $\Gamma (1-k)\gt 0$
 since
$\Gamma (1-k)\gt 0$
 since 
 $0\lt k\lt 1$
. Therefore, the result performed in (21) is valid. The proof readily follows.
$0\lt k\lt 1$
. Therefore, the result performed in (21) is valid. The proof readily follows.
Proof of Theorem 
1.1. By employing 
 $Q(x,t)\leq C_1$
 in Lemma2.1 and
$Q(x,t)\leq C_1$
 in Lemma2.1 and 
 $\|P(\cdot, t)\|_{L^{\infty }(\Omega )}\leq C_{16}$
 in Lemma2.6, where
$\|P(\cdot, t)\|_{L^{\infty }(\Omega )}\leq C_{16}$
 in Lemma2.6, where 
 $C_{16}$
 is a positive constant and
$C_{16}$
 is a positive constant and 
 $C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
, we can infer that there exists a positive constant
$C_1=\mathrm {max}\left \{\|Q_0(x)\|_{L^\infty (\Omega )},\frac {b}{h+\beta }\right \}$
, we can infer that there exists a positive constant 
 $M$
 depending on
$M$
 depending on 
 $P_0(x)$
 and
$P_0(x)$
 and 
 $Q_{0}(x)$
 for
$Q_{0}(x)$
 for 
 $P_{0}(x),Q_0(x)\geq 0(\not \equiv 0)$
 such that
$P_{0}(x),Q_0(x)\geq 0(\not \equiv 0)$
 such that 
 $\|P(\cdot, t)\|_{L^{\infty }(\Omega )} +\|Q(\cdot, t)\|_{L^{\infty }(\Omega )} \leq M$
 is fulfilled. The proof is finished.
$\|P(\cdot, t)\|_{L^{\infty }(\Omega )} +\|Q(\cdot, t)\|_{L^{\infty }(\Omega )} \leq M$
 is fulfilled. The proof is finished.
3. Steady-state bifurcation
In this section, we shall establish the existence and stability of the nonconstant steady state resulting from the steady-state bifurcation near the positive equilibrium of the system (1). To achieve this, let
 \begin{align*} \left \{ {\begin{array}{*{20}{l}} \displaystyle f(P,Q)=P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right ),\\[3pt] \displaystyle g(P,Q)=Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ. \end{array}} \right . \end{align*}
\begin{align*} \left \{ {\begin{array}{*{20}{l}} \displaystyle f(P,Q)=P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right ),\\[3pt] \displaystyle g(P,Q)=Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ. \end{array}} \right . \end{align*}
3.1 Stability analysis
 Taking 
 $\Omega =(0,L\pi )$
 with
$\Omega =(0,L\pi )$
 with 
 $L\gt 0$
. Then at
$L\gt 0$
. Then at 
 $E_{*}$
, the linearization form of the system (1) is given by
$E_{*}$
, the linearization form of the system (1) is given by
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {\partial P}{\partial t}=d_1\Delta P-\xi \phi (P^{*})\Delta Q-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}\right ]Q,\\[11pt] \displaystyle \frac {\partial Q}{\partial t}=d_2\Delta Q-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q. \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {\partial P}{\partial t}=d_1\Delta P-\xi \phi (P^{*})\Delta Q-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}\right ]Q,\\[11pt] \displaystyle \frac {\partial Q}{\partial t}=d_2\Delta Q-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q. \end{array}} \right . \end{align}
Considering the eigenvalue problem
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1\zeta _{xx}-\xi \phi (P^{*})\eta _{xx}-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}\zeta +\left [dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}\right ]\eta =\lambda _k\zeta, \\[7pt] \displaystyle d_2\eta _{xx}-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]\zeta -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}\eta =\lambda _k\eta, \\[7pt] \displaystyle \frac {\partial \zeta }{\partial \nu }=\frac {\partial \eta }{\partial \nu }=0, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1\zeta _{xx}-\xi \phi (P^{*})\eta _{xx}-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}\zeta +\left [dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}\right ]\eta =\lambda _k\zeta, \\[7pt] \displaystyle d_2\eta _{xx}-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]\zeta -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}\eta =\lambda _k\eta, \\[7pt] \displaystyle \frac {\partial \zeta }{\partial \nu }=\frac {\partial \eta }{\partial \nu }=0, \end{array}} \right . \end{align}
where 
 $\lambda _k$
 denotes the eigenvalue of the problem (24). For the no-flux boundary conditions, one takes the form of
$\lambda _k$
 denotes the eigenvalue of the problem (24). For the no-flux boundary conditions, one takes the form of 
 $(\zeta (x),\eta (x))$
 as follows
$(\zeta (x),\eta (x))$
 as follows
 \begin{align*} \zeta (x)=\sum _{k=0}^\infty a_k\mathrm {cos}\frac {k x}{L},\ \eta (x)=\sum _{k=0}^\infty b_k\mathrm {cos}\frac {k x}{L}, \end{align*}
\begin{align*} \zeta (x)=\sum _{k=0}^\infty a_k\mathrm {cos}\frac {k x}{L},\ \eta (x)=\sum _{k=0}^\infty b_k\mathrm {cos}\frac {k x}{L}, \end{align*}
where 
 $a_k$
 and
$a_k$
 and 
 $b_k$
 are constants. By using (24), one has
$b_k$
 are constants. By using (24), one has
 \begin{align*} \sum _{k=0}^\infty (J_k-\lambda _k I)\left ( \begin{array}{c} a_k\\[3pt] b_k \end{array} \right )\mathrm {cos}\frac {k x}{L}=0, \end{align*}
\begin{align*} \sum _{k=0}^\infty (J_k-\lambda _k I)\left ( \begin{array}{c} a_k\\[3pt] b_k \end{array} \right )\mathrm {cos}\frac {k x}{L}=0, \end{align*}
where
 \begin{align*} J_k=\left ( \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi \phi (P^{*})\delta _k^2 \\[9pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right ), \end{align*}
\begin{align*} J_k=\left ( \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi \phi (P^{*})\delta _k^2 \\[9pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right ), \end{align*}
with 
 $\delta _k=\frac {k}{L}\gt 0$
. Consequently, we have the following characteristic equation at
$\delta _k=\frac {k}{L}\gt 0$
. Consequently, we have the following characteristic equation at 
 $E_{*}$
$E_{*}$
 \begin{align} \lambda _k^2-T_k(\xi )\lambda _k+D_k(\xi )=0, \ \textrm {for}\ k\in \mathbb {N}_0=\{0,1,2,\cdot \cdot \cdot \}, \end{align}
\begin{align} \lambda _k^2-T_k(\xi )\lambda _k+D_k(\xi )=0, \ \textrm {for}\ k\in \mathbb {N}_0=\{0,1,2,\cdot \cdot \cdot \}, \end{align}
where
 \begin{align*} \left \{ {\begin{array}{*{20}{l}} T_k(\xi )=-(d_1+d_2)\delta _k^2+f_P+g_Q,\\[5pt] D_k(\xi )=d_1d_2\delta _k^4-\left [f_Pd_2+g_Qd_1+\phi (P^{*})g_P\xi \right ]\delta _k^2+d^2P_{*}Q_{*}, \end{array}} \right . \end{align*}
\begin{align*} \left \{ {\begin{array}{*{20}{l}} T_k(\xi )=-(d_1+d_2)\delta _k^2+f_P+g_Q,\\[5pt] D_k(\xi )=d_1d_2\delta _k^4-\left [f_Pd_2+g_Qd_1+\phi (P^{*})g_P\xi \right ]\delta _k^2+d^2P_{*}Q_{*}, \end{array}} \right . \end{align*}
with
 \begin{align*} f_P=-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}, \ f_Q=dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}, \ g_P=-dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}, \ g_Q= -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}. \end{align*}
\begin{align*} f_P=-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}, \ f_Q=dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}, \ g_P=-dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}, \ g_Q= -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}. \end{align*}
It is noticed that 
 $f_P\lt 0$
 and
$f_P\lt 0$
 and 
 $g_Q\lt 0$
. As a consequence, we know that
$g_Q\lt 0$
. As a consequence, we know that 
 $T_k(\xi )\lt 0$
 for any
$T_k(\xi )\lt 0$
 for any 
 $k\in \mathbb {N}_0$
. This implies that the stability of the unique positive equilibrium
$k\in \mathbb {N}_0$
. This implies that the stability of the unique positive equilibrium 
 $E_{*}$
 completely depends on the sign of
$E_{*}$
 completely depends on the sign of 
 $D_k(\xi )$
. By direct calculation, we can show that
$D_k(\xi )$
. By direct calculation, we can show that 
 $D_k(\xi )=D_k(\xi _k^S)=0$
 when
$D_k(\xi )=D_k(\xi _k^S)=0$
 when 
 $\xi =\xi _k^S$
, where
$\xi =\xi _k^S$
, where
 \begin{align*} \xi _k^S=\frac {d_1d_2\delta _k^4-(f_Pd_2 +g_Qd_1)\delta _k^2+d^2P_{*}Q_{*}}{\phi (P^{*})g_P\delta _k^2}\lt 0. \end{align*}
\begin{align*} \xi _k^S=\frac {d_1d_2\delta _k^4-(f_Pd_2 +g_Qd_1)\delta _k^2+d^2P_{*}Q_{*}}{\phi (P^{*})g_P\delta _k^2}\lt 0. \end{align*}
We establish the following.
Lemma 3.1. 
If there is a 
 $k_0\in \mathbb {N}_0\backslash \{0\}$
 satisfying
$k_0\in \mathbb {N}_0\backslash \{0\}$
 satisfying
 \begin{align*} k_0= \left \{ {\begin{array}{l@{\quad}l} \left [\hat {k}_0\right ]+1, \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\leq \xi _{[\hat {k}_0]+1}^S,\\[6pt] \left [\hat {k}_0\right ], \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\gt \xi _{[\hat {k}_0]+1}^S, \end{array}} \right . \end{align*}
\begin{align*} k_0= \left \{ {\begin{array}{l@{\quad}l} \left [\hat {k}_0\right ]+1, \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\leq \xi _{[\hat {k}_0]+1}^S,\\[6pt] \left [\hat {k}_0\right ], \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\gt \xi _{[\hat {k}_0]+1}^S, \end{array}} \right . \end{align*}
where 
 $\hat {k}_0=L\sqrt {d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}}$
. Then
$\hat {k}_0=L\sqrt {d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}}$
. Then 
 $\xi _k^S$
 has its maximum
$\xi _k^S$
 has its maximum 
 $\xi _{k_0}^S$
 at
$\xi _{k_0}^S$
 at 
 $k=k_0$
, where
$k=k_0$
, where 
 $[\cdot ]$
 is the integer function.
$[\cdot ]$
 is the integer function.
Proof. Since
 \begin{align*} \xi _k^S=\frac {d_1d_2\delta _k^2}{\phi (P^{*})g_P}+\frac {d^2P_{*}Q_{*}}{\phi (P^{*})g_P\delta _k^2}-\frac {f_Pd_2 +g_Qd_1}{\phi (P^{*})g_P}, \end{align*}
\begin{align*} \xi _k^S=\frac {d_1d_2\delta _k^2}{\phi (P^{*})g_P}+\frac {d^2P_{*}Q_{*}}{\phi (P^{*})g_P\delta _k^2}-\frac {f_Pd_2 +g_Qd_1}{\phi (P^{*})g_P}, \end{align*}
we define
 \begin{align*} F(z)=\frac {d_1d_2z}{\phi (P^{*})g_P}+\frac {d^2P_{*}Q_{*}}{\phi (P^{*})g_Pz}-\frac {f_Pd_2 +g_Qd_1}{\phi (P^{*})g_P}. \end{align*}
\begin{align*} F(z)=\frac {d_1d_2z}{\phi (P^{*})g_P}+\frac {d^2P_{*}Q_{*}}{\phi (P^{*})g_Pz}-\frac {f_Pd_2 +g_Qd_1}{\phi (P^{*})g_P}. \end{align*}
Taking the derivative of 
 $F(z)$
 with respect to
$F(z)$
 with respect to 
 $z$
, one has
$z$
, one has
 \begin{align*} F^\prime (z)=\frac {d_1d_2}{\phi (P^{*})g_P}-\frac {d^2P_{*}Q_{*}}{\phi (P^{*})g_Pz^2}. \end{align*}
\begin{align*} F^\prime (z)=\frac {d_1d_2}{\phi (P^{*})g_P}-\frac {d^2P_{*}Q_{*}}{\phi (P^{*})g_Pz^2}. \end{align*}
Let 
 $F^\prime (z)=0$
, then we have
$F^\prime (z)=0$
, then we have 
 $z=z_0=d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}$
. As a consequence,
$z=z_0=d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}$
. As a consequence, 
 $F^\prime (z)\lt 0$
 as
$F^\prime (z)\lt 0$
 as 
 $z\gt z_0$
 and
$z\gt z_0$
 and 
 $F^\prime (z)\gt 0$
 as
$F^\prime (z)\gt 0$
 as 
 $0\lt z\lt z_0$
. Moreover,
$0\lt z\lt z_0$
. Moreover, 
 $\lim _{z \rightarrow +\infty }F(z)=-\infty$
 since
$\lim _{z \rightarrow +\infty }F(z)=-\infty$
 since 
 $g_P\lt 0$
. Therefore,
$g_P\lt 0$
. Therefore, 
 $F(z)$
 could achieve its maximum at
$F(z)$
 could achieve its maximum at 
 $z=z_0$
. This is
$z=z_0$
. This is
 \begin{align*} \mathrm {max}_{z\gt 0}F(z)=F(z_0)=\frac {2d\sqrt {d_1d_2P_{*}Q_{*}}}{\phi (P^{*})g_P}-\frac {f_Pd_2 +g_Qd_1}{\phi (P^{*})g_P}\lt 0. \end{align*}
\begin{align*} \mathrm {max}_{z\gt 0}F(z)=F(z_0)=\frac {2d\sqrt {d_1d_2P_{*}Q_{*}}}{\phi (P^{*})g_P}-\frac {f_Pd_2 +g_Qd_1}{\phi (P^{*})g_P}\lt 0. \end{align*}
Recalling that 
 $z=\delta _k^2=(k/L)^2\gt 0$
 and the definition of
$z=\delta _k^2=(k/L)^2\gt 0$
 and the definition of 
 $F(z)$
, we infer that there is a
$F(z)$
, we infer that there is a 
 $k_0$
 satisfying
$k_0$
 satisfying
 \begin{align*} k_0= \left \{ {\begin{array}{l@{\quad}l} \left [\hat {k}_0\right ]+1, \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\leq \xi _{[\hat {k}_0]+1}^S,\\[6pt] \left [\hat {k}_0\right ], \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\gt \xi _{[\hat {k}_0]+1}^S \end{array}} \right . \end{align*}
\begin{align*} k_0= \left \{ {\begin{array}{l@{\quad}l} \left [\hat {k}_0\right ]+1, \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\leq \xi _{[\hat {k}_0]+1}^S,\\[6pt] \left [\hat {k}_0\right ], \ &\textrm {if}\ \xi _{[\hat {k}_0]}^S\gt \xi _{[\hat {k}_0]+1}^S \end{array}} \right . \end{align*}
with 
 $\hat {k}_0=L\sqrt {d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}}$
 such that
$\hat {k}_0=L\sqrt {d \sqrt {\frac {P_{*}Q_{*}}{d_1d_2}}}$
 such that 
 $\xi _k^S$
 has its maximum at
$\xi _k^S$
 has its maximum at 
 $k=k_0$
. The proof is completed.
$k=k_0$
. The proof is completed.
1.2. Proof of Theorem
 Clearly, 
 $f_P\lt 0,\ g_Q\lt 0,$
 and
$f_P\lt 0,\ g_Q\lt 0,$
 and 
 $g_P\lt 0$
 are valid conditions. As a consequence, we know that
$g_P\lt 0$
 are valid conditions. As a consequence, we know that 
 $T_k(\xi )\lt 0$
 for any
$T_k(\xi )\lt 0$
 for any 
 $k\in \mathbb {N}_0$
. This implies that the stability of the unique positive equilibrium
$k\in \mathbb {N}_0$
. This implies that the stability of the unique positive equilibrium 
 $E_{*}$
 completely depends on the sign of
$E_{*}$
 completely depends on the sign of 
 $D_k(\xi )$
. If
$D_k(\xi )$
. If 
 $\xi \geq 0$
, it immediately follows that
$\xi \geq 0$
, it immediately follows that 
 $D_k(\xi )\gt 0$
 for all
$D_k(\xi )\gt 0$
 for all 
 $k\in \mathbb {N}_0$
. This shows that all eigenvalues of the characteristic equation (25) with negative real parts. Therefore, (i) is true. If
$k\in \mathbb {N}_0$
. This shows that all eigenvalues of the characteristic equation (25) with negative real parts. Therefore, (i) is true. If 
 $\xi =\xi _k^S$
 is valid, we can check that
$\xi =\xi _k^S$
 is valid, we can check that 
 $D_k(\xi )=0$
, namely,
$D_k(\xi )=0$
, namely, 
 $0$
 is an eigenvalue of the characteristic equation (25). Hence, system (1) admits the steady-state bifurcation as
$0$
 is an eigenvalue of the characteristic equation (25). Hence, system (1) admits the steady-state bifurcation as 
 $\xi =\xi _k^S$
. Now for
$\xi =\xi _k^S$
. Now for 
 $D_k(\xi )$
, taking its derivation with respect to
$D_k(\xi )$
, taking its derivation with respect to 
 $\xi$
, one yields
$\xi$
, one yields 
 $D^{\prime }_k(\xi )=-\phi (P^{*})g_P\delta _k^2\gt 0$
. Therefore,
$D^{\prime }_k(\xi )=-\phi (P^{*})g_P\delta _k^2\gt 0$
. Therefore, 
 $D_k(\xi )$
 is strictly increasing about
$D_k(\xi )$
 is strictly increasing about 
 $\xi \in ({-}\infty, 0)$
. Keeping this in mind, if
$\xi \in ({-}\infty, 0)$
. Keeping this in mind, if 
 $\xi _k^S\lt \xi \lt 0$
, we have
$\xi _k^S\lt \xi \lt 0$
, we have 
 $0=D_k(\xi _k^S)\lt D_k(\xi )$
. Clearly,
$0=D_k(\xi _k^S)\lt D_k(\xi )$
. Clearly, 
 $E_{*}$
 is locally asymptotically stable as
$E_{*}$
 is locally asymptotically stable as 
 $\xi \gt \xi _k^S$
 for any
$\xi \gt \xi _k^S$
 for any 
 $k\in \mathbb {N}_0$
. However, if
$k\in \mathbb {N}_0$
. However, if 
 $\xi \lt \xi _k^S\lt 0$
 is valid, we infer that
$\xi \lt \xi _k^S\lt 0$
 is valid, we infer that 
 $D_k(\xi )\lt D_k(\xi _k^S)=0$
. This implies that there is at least one eigenvalue of the characteristic equation (25) with a positive real part. In this case,
$D_k(\xi )\lt D_k(\xi _k^S)=0$
. This implies that there is at least one eigenvalue of the characteristic equation (25) with a positive real part. In this case, 
 $E_{*}$
 is unstable, and (ii) is valid. For (iii), define the following time-evolution Lyapunov function
$E_{*}$
 is unstable, and (ii) is valid. For (iii), define the following time-evolution Lyapunov function
 \begin{align*} V(t)=&\int _\Omega \left (P(\cdot, t)-P_{*}-P_{*} \ln \frac {P(\cdot, t)}{P_{*}}\right )dx+\int _\Omega \left (Q(\cdot, t)-Q_{*}-Q_{*} \ln \frac {Q(\cdot, t)}{Q_{*}}\right )dx. \end{align*}
\begin{align*} V(t)=&\int _\Omega \left (P(\cdot, t)-P_{*}-P_{*} \ln \frac {P(\cdot, t)}{P_{*}}\right )dx+\int _\Omega \left (Q(\cdot, t)-Q_{*}-Q_{*} \ln \frac {Q(\cdot, t)}{Q_{*}}\right )dx. \end{align*}
Then, one yields
 \begin{align*} \dot {V}(t)=&\int _\Omega \left (1-\frac {P_{*}}{P}\right )P_{t}dx+\int _\Omega \left (1-\frac {Q_{*}}{Q}\right )Q_{t}dx \\[3pt]=&\int _\Omega (P-P_{*})\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )dx +\int _\Omega (Q-Q_{*})\left (\frac {be}{cP+eQ}-dP-\beta -h\right )dx \\[3pt]&-d_1P_{*}\int _\Omega \frac {\vert \nabla P\vert ^2}{P^2}dx-d_2Q_{*}\int _\Omega \frac {\vert \nabla Q\vert ^2}{Q^2}dx +\int _\Omega \frac {\xi P_{*}\phi (P)\nabla P\nabla Q}{P^2}dx \\[3pt]=&V_1(t)+V_2(t), \end{align*}
\begin{align*} \dot {V}(t)=&\int _\Omega \left (1-\frac {P_{*}}{P}\right )P_{t}dx+\int _\Omega \left (1-\frac {Q_{*}}{Q}\right )Q_{t}dx \\[3pt]=&\int _\Omega (P-P_{*})\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )dx +\int _\Omega (Q-Q_{*})\left (\frac {be}{cP+eQ}-dP-\beta -h\right )dx \\[3pt]&-d_1P_{*}\int _\Omega \frac {\vert \nabla P\vert ^2}{P^2}dx-d_2Q_{*}\int _\Omega \frac {\vert \nabla Q\vert ^2}{Q^2}dx +\int _\Omega \frac {\xi P_{*}\phi (P)\nabla P\nabla Q}{P^2}dx \\[3pt]=&V_1(t)+V_2(t), \end{align*}
where
 \begin{align*} V_1(t)=&\int _\Omega (P-P_{*})\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )dx +\int _\Omega (Q-Q_{*})\left (\frac {be}{cP+eQ}-dP-\beta -h\right )dx \\[3pt] =&-b\int _\Omega \frac {[c(P-P_{*})+e(Q-Q_{*})]^2}{(cP+eQ)(cP_{*}+eQ_{*})}dx \\[3pt] \lt &0, \end{align*}
\begin{align*} V_1(t)=&\int _\Omega (P-P_{*})\left (\frac {bc}{cP+eQ}+dQ-\alpha \right )dx +\int _\Omega (Q-Q_{*})\left (\frac {be}{cP+eQ}-dP-\beta -h\right )dx \\[3pt] =&-b\int _\Omega \frac {[c(P-P_{*})+e(Q-Q_{*})]^2}{(cP+eQ)(cP_{*}+eQ_{*})}dx \\[3pt] \lt &0, \end{align*}
and
 \begin{align*} V_2(t)=&-d_1P_{*}\int _\Omega \frac {\vert \nabla P\vert ^2}{P^2}dx-d_2Q_{*}\int _\Omega \frac {\vert \nabla Q\vert ^2}{Q^2}dx +\int _\Omega \frac {\xi P_{*}\phi (P)\nabla P\nabla Q}{P^2}dx \\[3pt] \leq &-d_1P_{*}\int _\Omega \frac {\vert \nabla P\vert ^2}{P^2}dx-d_2Q_{*}\int _\Omega \frac {\vert \nabla Q\vert ^2}{Q^2}dx +\int _\Omega \frac {c_0\xi P_{*}\nabla P\nabla Q}{P}dx \\[3pt] =&-\int _\Omega XAX^Tdx, \end{align*}
\begin{align*} V_2(t)=&-d_1P_{*}\int _\Omega \frac {\vert \nabla P\vert ^2}{P^2}dx-d_2Q_{*}\int _\Omega \frac {\vert \nabla Q\vert ^2}{Q^2}dx +\int _\Omega \frac {\xi P_{*}\phi (P)\nabla P\nabla Q}{P^2}dx \\[3pt] \leq &-d_1P_{*}\int _\Omega \frac {\vert \nabla P\vert ^2}{P^2}dx-d_2Q_{*}\int _\Omega \frac {\vert \nabla Q\vert ^2}{Q^2}dx +\int _\Omega \frac {c_0\xi P_{*}\nabla P\nabla Q}{P}dx \\[3pt] =&-\int _\Omega XAX^Tdx, \end{align*}
where we define 
 $ X(x,t)=(|\nabla P(x,t)|,|\nabla Q(x,t)|)$
 in
$ X(x,t)=(|\nabla P(x,t)|,|\nabla Q(x,t)|)$
 in 
 $\Omega \times (0,\infty )$
 and
$\Omega \times (0,\infty )$
 and
 \begin{align*} A=\left ( \begin{array}{c@{\quad}c} \displaystyle \frac {d_1P_{*}}{P^2} & \displaystyle -\frac {c_0\xi P_{*}}{2P}\\[3pt] \displaystyle -\frac {c_0\xi P_{*}}{2P} & \displaystyle \frac {d_2Q_{*}}{Q^2} \end{array} \right ). \end{align*}
\begin{align*} A=\left ( \begin{array}{c@{\quad}c} \displaystyle \frac {d_1P_{*}}{P^2} & \displaystyle -\frac {c_0\xi P_{*}}{2P}\\[3pt] \displaystyle -\frac {c_0\xi P_{*}}{2P} & \displaystyle \frac {d_2Q_{*}}{Q^2} \end{array} \right ). \end{align*}
Therefore, if 
 $0\lt \xi ^2\lt \frac {4d_1d_2Q_{*}}{c_0^2P_{*}C_1^2}$
 is valid, one obtains
$0\lt \xi ^2\lt \frac {4d_1d_2Q_{*}}{c_0^2P_{*}C_1^2}$
 is valid, one obtains
 \begin{align*} Trace (A)=\frac {d_1P_{*}}{P^2}+\frac {d_2Q_{*}}{Q^2}\gt 0,\ \ Det (A)=\frac {P_{*}}{P^2}\left (\frac {d_1d_2Q_{*}}{Q^2}-\frac {c_0^2\xi ^2 P_{*}}{4}\right )\gt 0. \end{align*}
\begin{align*} Trace (A)=\frac {d_1P_{*}}{P^2}+\frac {d_2Q_{*}}{Q^2}\gt 0,\ \ Det (A)=\frac {P_{*}}{P^2}\left (\frac {d_1d_2Q_{*}}{Q^2}-\frac {c_0^2\xi ^2 P_{*}}{4}\right )\gt 0. \end{align*}
Hence, 
 $A$
 is a positive definite matrix which implies that
$A$
 is a positive definite matrix which implies that 
 $V_2(t)=-\int _\Omega XAX^Tdx\lt 0$
 is true. Thereby,
$V_2(t)=-\int _\Omega XAX^Tdx\lt 0$
 is true. Thereby, 
 $\dot {V}(t)=V_1(t)+V_2(t)\lt 0$
 is valid, namely, the unique positive equilibrium
$\dot {V}(t)=V_1(t)+V_2(t)\lt 0$
 is valid, namely, the unique positive equilibrium 
 $E_{*}$
 is globally asymptotically stable. This finishes the proof.
$E_{*}$
 is globally asymptotically stable. This finishes the proof.
3.2 Bifurcating solution: nonconstant steady state
3.2.1 Existence
 In this subsection, we explore the existence and stability of the nonconstant steady states around the steady state bifurcation onset 
 $\xi =\xi _k^S$
 for
$\xi =\xi _k^S$
 for 
 $k\in \mathbb {N}_0\backslash \{0\}$
. Define two Hilbert spaces:
$k\in \mathbb {N}_0\backslash \{0\}$
. Define two Hilbert spaces: 
 $\mathbf {X}=\{u\in H^2(0,L\pi )|u^{\prime }(0)=u^{\prime }(L\pi )=0\}\ \textrm {and}\ \mathbf {Y}=L^2(0,L\pi )$
. Rewrite system (2) as follows.
$\mathbf {X}=\{u\in H^2(0,L\pi )|u^{\prime }(0)=u^{\prime }(L\pi )=0\}\ \textrm {and}\ \mathbf {Y}=L^2(0,L\pi )$
. Rewrite system (2) as follows.
 \begin{align} \left \{ {\begin{array}{l@{\quad}l} \displaystyle 0=(d_1P^{\prime }-\xi \phi (P) Q^{\prime })^{\prime }+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right ),\ \ &x\in \Omega .\\[3pt] \displaystyle 0=d_2 Q^{\prime \prime }+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ,\ \ &x\in \Omega .\\[3pt] P^{\prime }= Q^{\prime }=0,\ \ &x\in \partial \Omega . \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{l@{\quad}l} \displaystyle 0=(d_1P^{\prime }-\xi \phi (P) Q^{\prime })^{\prime }+P\left (\frac {bc}{cP+eQ}+dQ-\alpha \right ),\ \ &x\in \Omega .\\[3pt] \displaystyle 0=d_2 Q^{\prime \prime }+Q\left (\frac {be}{cP+eQ}-dP-\beta \right )-hQ,\ \ &x\in \Omega .\\[3pt] P^{\prime }= Q^{\prime }=0,\ \ &x\in \partial \Omega . \end{array}} \right . \end{align}
Recalling the operator 
 $\mathcal {F}(P,Q,\xi )$
 in (4), then system (26) is equivalent to
$\mathcal {F}(P,Q,\xi )$
 in (4), then system (26) is equivalent to 
 $\mathcal {F}(P,Q,\xi )=0$
 and
$\mathcal {F}(P,Q,\xi )=0$
 and 
 $\mathcal {F}(P,Q,\xi ): \mathbf {X}\times \mathbf {X}\times \mathbb {R}\longrightarrow \mathbf {Y}\times \mathbf {Y}$
 is analytic for
$\mathcal {F}(P,Q,\xi ): \mathbf {X}\times \mathbf {X}\times \mathbb {R}\longrightarrow \mathbf {Y}\times \mathbf {Y}$
 is analytic for 
 $(P,Q,\xi )\in \mathbf {X}\times \mathbf {X}\times \mathbb {R}$
. Now, at the onset
$(P,Q,\xi )\in \mathbf {X}\times \mathbf {X}\times \mathbb {R}$
. Now, at the onset 
 $\xi =\xi _k^S$
, we can confirm that
$\xi =\xi _k^S$
, we can confirm that 
 $\mathcal {N}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi _k^S))\neq \{0\}$
, where
$\mathcal {N}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi _k^S))\neq \{0\}$
, where 
 $\mathcal {N}$
 is the null space and
$\mathcal {N}$
 is the null space and 
 $D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )$
 has been appeared in (6). Benefiting from (6), we infer that the null space
$D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )$
 has been appeared in (6). Benefiting from (6), we infer that the null space 
 $\mathcal {N}$
 consists of solutions to the problem
$\mathcal {N}$
 consists of solutions to the problem
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle 0=d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q,\\[6pt] \displaystyle 0=d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q,\\[6pt] \displaystyle P^{\prime }= Q^{\prime }=0. \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle 0=d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q,\\[6pt] \displaystyle 0=d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q,\\[6pt] \displaystyle P^{\prime }= Q^{\prime }=0. \end{array}} \right . \end{align}
Let
 \begin{align*} P(x)=\sum _{k=0}^\infty a^{\prime }_k\mathrm {cos}\frac {k x}{L},\ Q(x)=\sum _{k=0}^\infty b^{\prime }_k\mathrm {cos}\frac {k x}{L}. \end{align*}
\begin{align*} P(x)=\sum _{k=0}^\infty a^{\prime }_k\mathrm {cos}\frac {k x}{L},\ Q(x)=\sum _{k=0}^\infty b^{\prime }_k\mathrm {cos}\frac {k x}{L}. \end{align*}
Then, putting them into (27), we get
 \begin{align*} \left ( \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi \phi (P^{*})\delta _k^2 \\[3pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right )\left ( \begin{array}{c} a^{\prime }_k \\[3pt] b^{\prime }_k \end{array} \right )=\left ( \begin{array}{c} 0 \\[3pt] 0 \end{array} \right ). \end{align*}
\begin{align*} \left ( \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi \phi (P^{*})\delta _k^2 \\[3pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right )\left ( \begin{array}{c} a^{\prime }_k \\[3pt] b^{\prime }_k \end{array} \right )=\left ( \begin{array}{c} 0 \\[3pt] 0 \end{array} \right ). \end{align*}
Consequently, if 
 $\xi =\xi _k^S$
, we have
$\xi =\xi _k^S$
, we have 
 $ \mathcal {N}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi _k^S))=\textrm {span}\{\widehat {P}_{k},\widehat {Q}_{k}\},$
 where
$ \mathcal {N}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi _k^S))=\textrm {span}\{\widehat {P}_{k},\widehat {Q}_{k}\},$
 where 
 $\widehat {P}_{k}$
 and
$\widehat {P}_{k}$
 and 
 $\widehat {Q}_{k}$
 can be found in (9). Moreover, utilizing Theorem 3.3 of [Reference Shi and Wang33] or Lemma2.3 of [Reference Wang and Xu36], we know that
$\widehat {Q}_{k}$
 can be found in (9). Moreover, utilizing Theorem 3.3 of [Reference Shi and Wang33] or Lemma2.3 of [Reference Wang and Xu36], we know that 
 $D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )$
 is a Fredholm operator with index
$D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )$
 is a Fredholm operator with index 
 $0$
 and
$0$
 and 
 $codim\mathcal {R}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi ))=1$
 is true, where
$codim\mathcal {R}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi ))=1$
 is true, where 
 $\mathcal {R}$
 is the range of the operator.
$\mathcal {R}$
 is the range of the operator.
Now we can show the validity of Theorem1.3.
1.3. Proof of Theorem
Owing to the Crandall–Rabinowitz bifurcation theory [Reference Crandall and Rabinowitz9], we only need to prove the following transversality condition
 \begin{align} \frac {d}{d\xi }(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi ))(\widehat {P}_{k},\widehat {Q}_{k})|_{\xi =\xi _k^S} \notin \mathcal {R}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )) \end{align}
\begin{align} \frac {d}{d\xi }(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi ))(\widehat {P}_{k},\widehat {Q}_{k})|_{\xi =\xi _k^S} \notin \mathcal {R}(D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )) \end{align}
is true, where 
 $\mathcal {R}$
 denotes the range of the operator. Now, we assume that (28) fails, then from (6), we can set
$\mathcal {R}$
 denotes the range of the operator. Now, we assume that (28) fails, then from (6), we can set
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1P^{\prime \prime }-\xi _k^S(\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q=\phi (P_{*})\delta _k^2\mathrm {cos}\frac {k x}{L},\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q=0,\\[3pt] P^{\prime }= Q^{\prime }=0. \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1P^{\prime \prime }-\xi _k^S(\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q=\phi (P_{*})\delta _k^2\mathrm {cos}\frac {k x}{L},\\[6pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q=0,\\[3pt] P^{\prime }= Q^{\prime }=0. \end{array}} \right . \end{align}
Then, multiplying (29) by 
 $\mathrm {cos}\frac {k x}{L}$
 and integrating it over
$\mathrm {cos}\frac {k x}{L}$
 and integrating it over 
 $(0,L\pi )$
, one obtains
$(0,L\pi )$
, one obtains
 \begin{align} \left ( \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi _k^S\phi (P^{*})\delta _k^2 \\[3pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right )\left ( \begin{array}{c} \displaystyle {\int _0^{L\pi } P\mathrm {cos}\frac {k x}{L}dx}\\[3pt] \displaystyle {\int _0^{L\pi } Q\mathrm {cos}\frac {k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} \displaystyle \frac {\pi \delta _k^2\phi (P_{*})L}{2} \\[3pt] 0 \end{array} \right ). \end{align}
\begin{align} \left ( \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi _k^S\phi (P^{*})\delta _k^2 \\[3pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right )\left ( \begin{array}{c} \displaystyle {\int _0^{L\pi } P\mathrm {cos}\frac {k x}{L}dx}\\[3pt] \displaystyle {\int _0^{L\pi } Q\mathrm {cos}\frac {k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} \displaystyle \frac {\pi \delta _k^2\phi (P_{*})L}{2} \\[3pt] 0 \end{array} \right ). \end{align}
Because there is the steady-state bifurcation when 
 $\xi =\xi _k^S$
, we obtain
$\xi =\xi _k^S$
, we obtain
 \begin{align*} \left | \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi _k^S\phi (P^{*})\delta _k^2 \\[3pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right |=0. \end{align*}
\begin{align*} \left | \begin{array}{c@{\quad}c} \displaystyle -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}-d_1\delta _k^2 & \displaystyle dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2}+\xi _k^S\phi (P^{*})\delta _k^2 \\[3pt] \displaystyle -dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2} & \displaystyle -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}-d_2\delta _k^2 \end{array} \right |=0. \end{align*}
This leads to a contradiction from (30), and thereby (28) is valid. We end the proof.
3.2.2 Stability
 In this subsection, we want to ensure the stability of the bifurcating solution 
 $(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 in Theorem1.3. To this end, from (26), we know that the bifurcating solution
$(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 in Theorem1.3. To this end, from (26), we know that the bifurcating solution 
 $(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 admits
$(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 admits
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle 0=(d_1P^{\prime }_k(\varepsilon, x)-\xi _k^S(\varepsilon )\phi (P_k(\varepsilon, x)) Q^{\prime }_k(\varepsilon, x))^{\prime }+P_k(\varepsilon, x)\left (\frac {bc}{cP_k(\varepsilon, x)+eQ_k(\varepsilon, x)}+dQ_k(\varepsilon, x)-\alpha \right ),\\[6pt] \displaystyle 0= d_2 Q_k^{\prime \prime }(\varepsilon, x)+Q_k(\varepsilon, x)\left (\frac {be}{cP_k(\varepsilon, x)+eQ_k(\varepsilon, x)}-dP_k(\varepsilon, x)-\beta -h\right ),\\[6pt] P_k^{\prime }= Q_k^{\prime }=0. \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle 0=(d_1P^{\prime }_k(\varepsilon, x)-\xi _k^S(\varepsilon )\phi (P_k(\varepsilon, x)) Q^{\prime }_k(\varepsilon, x))^{\prime }+P_k(\varepsilon, x)\left (\frac {bc}{cP_k(\varepsilon, x)+eQ_k(\varepsilon, x)}+dQ_k(\varepsilon, x)-\alpha \right ),\\[6pt] \displaystyle 0= d_2 Q_k^{\prime \prime }(\varepsilon, x)+Q_k(\varepsilon, x)\left (\frac {be}{cP_k(\varepsilon, x)+eQ_k(\varepsilon, x)}-dP_k(\varepsilon, x)-\beta -h\right ),\\[6pt] P_k^{\prime }= Q_k^{\prime }=0. \end{array}} \right . \end{align}
In the sequel, let us expand the critical threshold 
 $\xi _k^S(\varepsilon )$
 and bifurcating solution
$\xi _k^S(\varepsilon )$
 and bifurcating solution 
 $(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 as below:
$(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x))$
 as below:
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \xi _k^S(\varepsilon )=\xi _k^S+\varepsilon \xi _1+\varepsilon ^2\xi _2+\cdot \cdot \cdot, \\[6pt] P_{k}(\varepsilon, x)=P_{*}+\varepsilon \mathrm {cos}\frac {k x}{L}+\varepsilon ^2P_1(x)+\varepsilon ^3P_2(x)+\cdot \cdot \cdot, \\[6pt] Q_{k}(\varepsilon, x)=Q_{*}+\varepsilon \alpha _k\mathrm {cos}\frac {k x}{L}+\varepsilon ^2Q_1(x)+\varepsilon ^3Q_2(x)+\cdot \cdot \cdot, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \xi _k^S(\varepsilon )=\xi _k^S+\varepsilon \xi _1+\varepsilon ^2\xi _2+\cdot \cdot \cdot, \\[6pt] P_{k}(\varepsilon, x)=P_{*}+\varepsilon \mathrm {cos}\frac {k x}{L}+\varepsilon ^2P_1(x)+\varepsilon ^3P_2(x)+\cdot \cdot \cdot, \\[6pt] Q_{k}(\varepsilon, x)=Q_{*}+\varepsilon \alpha _k\mathrm {cos}\frac {k x}{L}+\varepsilon ^2Q_1(x)+\varepsilon ^3Q_2(x)+\cdot \cdot \cdot, \end{array}} \right . \end{align}
where 
 $\xi _1,\xi _2$
 will be computed later and
$\xi _1,\xi _2$
 will be computed later and 
 $(P_j,Q_j)\in \mathcal {K}$
 for
$(P_j,Q_j)\in \mathcal {K}$
 for 
 $j=1,2$
, where
$j=1,2$
, where 
 $\mathcal {K}$
 has been defined in (8). For the density function
$\mathcal {K}$
 has been defined in (8). For the density function 
 $\phi (P_{k}(\varepsilon, x))$
, we set
$\phi (P_{k}(\varepsilon, x))$
, we set
 \begin{align*} \phi (P_{k}(\varepsilon, x))=\phi (P_{*})+\phi _{P_{k}(\varepsilon, x)}(P_{*})P_{k}(\varepsilon, x) +\frac {1}{2}\phi _{P_{k}(\varepsilon, x)P_{k}(\varepsilon, x)}(P_{*})P_{k}^2(\varepsilon, x)+\cdot \cdot \cdot, \end{align*}
\begin{align*} \phi (P_{k}(\varepsilon, x))=\phi (P_{*})+\phi _{P_{k}(\varepsilon, x)}(P_{*})P_{k}(\varepsilon, x) +\frac {1}{2}\phi _{P_{k}(\varepsilon, x)P_{k}(\varepsilon, x)}(P_{*})P_{k}^2(\varepsilon, x)+\cdot \cdot \cdot, \end{align*}
Using the second perturbation of (32), we get
 \begin{align} \phi (P_{k}(\varepsilon, x))=\phi (P_{*})+\varepsilon \phi _{P_{k}}(P_{*})\mathrm {cos}\frac {k x}{L}+\varepsilon ^2\left (\phi _{P_{k}}(P_{*})P_1(x)+ \frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\mathrm {cos}^2\frac {k x}{L}\right )+\cdot \cdot \cdot . \end{align}
\begin{align} \phi (P_{k}(\varepsilon, x))=\phi (P_{*})+\varepsilon \phi _{P_{k}}(P_{*})\mathrm {cos}\frac {k x}{L}+\varepsilon ^2\left (\phi _{P_{k}}(P_{*})P_1(x)+ \frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\mathrm {cos}^2\frac {k x}{L}\right )+\cdot \cdot \cdot . \end{align}
Then, submitting (32)–(33) into (31), we obtain
 \begin{align} \left \{ {\begin{array}{*{20}{l}} 0=(d_1 P^{\prime }_{k}-\xi _k^S(\varepsilon )\phi (P_{k}) Q_k^{\prime })^{\prime }+f_PP_{*}+f_QQ_{*}+\mathcal {R}_0+\varepsilon \mathcal {R}_1(x)+\varepsilon ^2 \mathcal {R}_2(x)+\varepsilon ^3 \mathcal {R}_3(x)+\cdot \cdot \cdot, \\[6pt] 0=d_2 Q_k^{\prime \prime }+g_PP_{*}+g_QQ_{*}+\mathcal {V}_0+\varepsilon \mathcal {V}_1(x)+\varepsilon ^2 \mathcal {V}_2(x)+\varepsilon ^3 \mathcal {V}_3(x)+\cdot \cdot \cdot, \\[6pt] P^{\prime }_k= Q^{\prime }_k=0, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} 0=(d_1 P^{\prime }_{k}-\xi _k^S(\varepsilon )\phi (P_{k}) Q_k^{\prime })^{\prime }+f_PP_{*}+f_QQ_{*}+\mathcal {R}_0+\varepsilon \mathcal {R}_1(x)+\varepsilon ^2 \mathcal {R}_2(x)+\varepsilon ^3 \mathcal {R}_3(x)+\cdot \cdot \cdot, \\[6pt] 0=d_2 Q_k^{\prime \prime }+g_PP_{*}+g_QQ_{*}+\mathcal {V}_0+\varepsilon \mathcal {V}_1(x)+\varepsilon ^2 \mathcal {V}_2(x)+\varepsilon ^3 \mathcal {V}_3(x)+\cdot \cdot \cdot, \\[6pt] P^{\prime }_k= Q^{\prime }_k=0, \end{array}} \right . \end{align}
where
 \begin{align*} &(d_1 P^{\prime }_{k}(\varepsilon, x)-\xi _k^S(\varepsilon )\phi (P_{k}(\varepsilon, x)) Q^{\prime }_k(\varepsilon, x))^{\prime }\\[3pt] =&d_1 P^{\prime \prime }_{k}(\varepsilon, x)-\xi _k^S(\varepsilon )(\phi ^{\prime }(P_{k}(\varepsilon, x))Q^{\prime }_k(\varepsilon, x)+\phi (P_{k}(\varepsilon, x)) Q^{\prime \prime }_k(\varepsilon, x)) \\[3pt]=&\varepsilon \left [\delta _k^2\xi _k^S\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L}-\delta _k^2d_1\mathrm {cos}\frac {kx}{L}\right ] +\varepsilon ^2\left [d_1P^{\prime \prime }_1(x)+\delta _k^2\xi _1\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L} \right .\\[3pt] &\left .+\delta _k^2\xi _k^S\phi _{P_{1k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L}-\xi _k^S\phi (P_{*})Q^{\prime \prime }_1(x)\right ] +\varepsilon ^3\left [d_1P^{\prime \prime }_2(x)+\delta _k^2\xi _1\phi _{P_{k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L}\right .\\[3pt] &\left .-\xi _1\phi (P_{*})Q^{\prime \prime }_1(x)-\xi _k^S\phi _{P_{k}}(P_{*})\mathrm {cos}\frac {kx}{L}Q^{\prime \prime }_1(x)-\xi _k^S\phi (P_{*})Q^{\prime \prime }_2(x) +\xi _k^S\phi _{P_{k}}(P_{*})\delta _k\sin \frac {kx}{L}Q^{\prime }_1(x)\right .\\[3pt] &\left .+\delta _k^2\xi _k^S\alpha _k\mathrm {cos}\frac {kx}{L}\left (\phi _{P_{k}}(P_{*})P_1(x)+\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\mathrm {cos}^2\frac {k x}{L}\right )+\delta _k\xi _k^S\alpha _k\sin \frac {kx}{L}\right .\\[3pt] &\left .\times \left (\phi _{P_{k}}(P_{*})P^{\prime }_1(x)-\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\delta _k\sin \frac {2k x}{L}\right ) +\delta _k^2\xi _2\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L}\right ], \end{align*}
\begin{align*} &(d_1 P^{\prime }_{k}(\varepsilon, x)-\xi _k^S(\varepsilon )\phi (P_{k}(\varepsilon, x)) Q^{\prime }_k(\varepsilon, x))^{\prime }\\[3pt] =&d_1 P^{\prime \prime }_{k}(\varepsilon, x)-\xi _k^S(\varepsilon )(\phi ^{\prime }(P_{k}(\varepsilon, x))Q^{\prime }_k(\varepsilon, x)+\phi (P_{k}(\varepsilon, x)) Q^{\prime \prime }_k(\varepsilon, x)) \\[3pt]=&\varepsilon \left [\delta _k^2\xi _k^S\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L}-\delta _k^2d_1\mathrm {cos}\frac {kx}{L}\right ] +\varepsilon ^2\left [d_1P^{\prime \prime }_1(x)+\delta _k^2\xi _1\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L} \right .\\[3pt] &\left .+\delta _k^2\xi _k^S\phi _{P_{1k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L}-\xi _k^S\phi (P_{*})Q^{\prime \prime }_1(x)\right ] +\varepsilon ^3\left [d_1P^{\prime \prime }_2(x)+\delta _k^2\xi _1\phi _{P_{k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L}\right .\\[3pt] &\left .-\xi _1\phi (P_{*})Q^{\prime \prime }_1(x)-\xi _k^S\phi _{P_{k}}(P_{*})\mathrm {cos}\frac {kx}{L}Q^{\prime \prime }_1(x)-\xi _k^S\phi (P_{*})Q^{\prime \prime }_2(x) +\xi _k^S\phi _{P_{k}}(P_{*})\delta _k\sin \frac {kx}{L}Q^{\prime }_1(x)\right .\\[3pt] &\left .+\delta _k^2\xi _k^S\alpha _k\mathrm {cos}\frac {kx}{L}\left (\phi _{P_{k}}(P_{*})P_1(x)+\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\mathrm {cos}^2\frac {k x}{L}\right )+\delta _k\xi _k^S\alpha _k\sin \frac {kx}{L}\right .\\[3pt] &\left .\times \left (\phi _{P_{k}}(P_{*})P^{\prime }_1(x)-\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\delta _k\sin \frac {2k x}{L}\right ) +\delta _k^2\xi _2\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L}\right ], \end{align*}
and 
 $\mathcal {R}_0,\mathcal {R}_j(x),\mathcal {V}_0,\mathcal {V}_j(x)$
 for
$\mathcal {R}_0,\mathcal {R}_j(x),\mathcal {V}_0,\mathcal {V}_j(x)$
 for 
 $j=1,2,3$
 can be found in Appendix A and B, respectively.
$j=1,2,3$
 can be found in Appendix A and B, respectively.
1.4. Proof of Theorem
 To obtain the desired results, we should first determine the values of 
 $\xi _1$
 and
$\xi _1$
 and 
 $\xi _2$
, respectively. From the perturbation equation (34), we can get
$\xi _2$
, respectively. From the perturbation equation (34), we can get 
 $\mathcal {O}(\varepsilon ^2)$
 term as below.
$\mathcal {O}(\varepsilon ^2)$
 term as below.
 \begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1P^{\prime \prime }_1(x)+\Theta (x)+ \mathcal {R}_2(x),\\[3pt] 0=d_2 Q_1^{\prime \prime }(x)+ \mathcal {V}_2(x),\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1P^{\prime \prime }_1(x)+\Theta (x)+ \mathcal {R}_2(x),\\[3pt] 0=d_2 Q_1^{\prime \prime }(x)+ \mathcal {V}_2(x),\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0, \end{array}} \right . \end{align}
where 
 $ \Theta (x)=\delta _k^2\xi _1\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L} +\delta _k^2\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L}-\xi _k^S\phi (P_{*})Q^{\prime \prime }_1(x).$
 Multiplying (35) by
$ \Theta (x)=\delta _k^2\xi _1\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L} +\delta _k^2\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L}-\xi _k^S\phi (P_{*})Q^{\prime \prime }_1(x).$
 Multiplying (35) by 
 $\mathrm {cos}\frac {kx}{L}$
 and integrating it over
$\mathrm {cos}\frac {kx}{L}$
 and integrating it over 
 $(0,L\pi )$
, we have
$(0,L\pi )$
, we have
 \begin{align} \frac {\delta _k^2L\pi }{2}\xi _1\phi (P_{*})\alpha _k=\left (d_1\delta _k^2-\mathcal {R}_{21}\right )\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx -\left (\xi _k^S\phi (P_{*})\delta _k^2+\mathcal {R}_{22}\right )\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx, \end{align}
\begin{align} \frac {\delta _k^2L\pi }{2}\xi _1\phi (P_{*})\alpha _k=\left (d_1\delta _k^2-\mathcal {R}_{21}\right )\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx -\left (\xi _k^S\phi (P_{*})\delta _k^2+\mathcal {R}_{22}\right )\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx, \end{align}
and
 \begin{align} 0=\mathcal {V}_{21}\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx +\left (\mathcal {V}_{22}-d_2\delta _k^2\right )\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {k x}{L}dx, \end{align}
\begin{align} 0=\mathcal {V}_{21}\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx +\left (\mathcal {V}_{22}-d_2\delta _k^2\right )\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {k x}{L}dx, \end{align}
where
 \begin{align*} \mathcal {R}_{21}=&f_P+f_{PP}P_{*}+f_{PQ}Q_{*}+f_{PPQ}Q_{*}P_{*}+\frac {f_{PQQ}}{2}Q_{*}^2+\frac {f_{PPP}}{2}P_{*}^2,\\[3pt] \mathcal {R}_{22}=&f_Q+f_{PQ}P_{*}+f_{QQ}Q_{*}+\frac {f_{QQQ}}{2}Q_{*}^2+\frac {f_{PPQ}}{2}P_{*}^2+f_{PQQ}P_{*}Q_{*},\\[3pt] \mathcal {V}_{21}=&g_P+g_{PP}P_{*}+g_{PQ}Q_{*}+g_{PPQ}Q_{*}P_{*}+\frac {g_{PQQ}}{2}Q_{*}^2+\frac {g_{PPP}}{2}P_{*}^2,\\[3pt] \mathcal {V}_{22}=&g_Q+g_{PQ}P_{*}+g_{QQ}Q_{*}+\frac {g_{QQQ}}{2}Q_{*}^2+\frac {g_{PPQ}}{2}P_{*}^2+g_{PQQ}Q_{*}P_{*}. \end{align*}
\begin{align*} \mathcal {R}_{21}=&f_P+f_{PP}P_{*}+f_{PQ}Q_{*}+f_{PPQ}Q_{*}P_{*}+\frac {f_{PQQ}}{2}Q_{*}^2+\frac {f_{PPP}}{2}P_{*}^2,\\[3pt] \mathcal {R}_{22}=&f_Q+f_{PQ}P_{*}+f_{QQ}Q_{*}+\frac {f_{QQQ}}{2}Q_{*}^2+\frac {f_{PPQ}}{2}P_{*}^2+f_{PQQ}P_{*}Q_{*},\\[3pt] \mathcal {V}_{21}=&g_P+g_{PP}P_{*}+g_{PQ}Q_{*}+g_{PPQ}Q_{*}P_{*}+\frac {g_{PQQ}}{2}Q_{*}^2+\frac {g_{PPP}}{2}P_{*}^2,\\[3pt] \mathcal {V}_{22}=&g_Q+g_{PQ}P_{*}+g_{QQ}Q_{*}+\frac {g_{QQQ}}{2}Q_{*}^2+\frac {g_{PPQ}}{2}P_{*}^2+g_{PQQ}Q_{*}P_{*}. \end{align*}
Moreover, in light of (8) and 
 $(P_1,Q_1)\in \mathcal {K}$
, we have
$(P_1,Q_1)\in \mathcal {K}$
, we have
 \begin{align} 0=\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx+\alpha _k\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx, \end{align}
\begin{align} 0=\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx+\alpha _k\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx, \end{align}
where 
 $\alpha _k$
 can be found in (9). Consequently, by using (37) and (38), one obtains
$\alpha _k$
 can be found in (9). Consequently, by using (37) and (38), one obtains
 \begin{align*} \left ( \begin{array}{c@{\quad}c} \mathcal {V}_{21}&\mathcal {V}_{22}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right )\left ( \begin{array}{c} {\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx}\\[3pt] {\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} 0\\[3pt] 0 \end{array} \right ). \end{align*}
\begin{align*} \left ( \begin{array}{c@{\quad}c} \mathcal {V}_{21}&\mathcal {V}_{22}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right )\left ( \begin{array}{c} {\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx}\\[3pt] {\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} 0\\[3pt] 0 \end{array} \right ). \end{align*}
It is noticed that
 \begin{align*} \left | \begin{array}{c@{\quad}c} \mathcal {V}_{21}&\mathcal {V}_{22}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right |=\alpha _k\mathcal {V}_{21}-\mathcal {V}_{22}+d_2\delta _k^2\neq 0. \end{align*}
\begin{align*} \left | \begin{array}{c@{\quad}c} \mathcal {V}_{21}&\mathcal {V}_{22}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right |=\alpha _k\mathcal {V}_{21}-\mathcal {V}_{22}+d_2\delta _k^2\neq 0. \end{align*}
This gives
 \begin{align} {\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx}= {\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx}=0. \end{align}
\begin{align} {\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {k x}{L}dx}= {\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {k x}{L}dx}=0. \end{align}
Putting (39) into (36), we infer that 
 $\xi _1=0$
.
$\xi _1=0$
.
 Our next task is to determine 
 $\xi _2$
 in the first perturbation equation of (32). To this end, we investigate the
$\xi _2$
 in the first perturbation equation of (32). To this end, we investigate the 
 $\mathcal {O}(\varepsilon ^3)$
 term of (34). This is
$\mathcal {O}(\varepsilon ^3)$
 term of (34). This is
 \begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1P^{\prime \prime }_2(x)+\Phi (x)+ \mathcal {R}_3(x),\\[3pt] 0=d_2 Q_2^{\prime \prime }(x)+ \mathcal {V}_3(x),\\[3pt] P^{\prime }_2(x)=Q_2^{\prime }(x)=0, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1P^{\prime \prime }_2(x)+\Phi (x)+ \mathcal {R}_3(x),\\[3pt] 0=d_2 Q_2^{\prime \prime }(x)+ \mathcal {V}_3(x),\\[3pt] P^{\prime }_2(x)=Q_2^{\prime }(x)=0, \end{array}} \right . \end{align}
where
 \begin{align*} \Phi (x)=&\delta _k^2\xi _1\phi _{P_{k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L} -\xi _1\phi (P_{*})Q^{\prime \prime }_1(x)-\xi _k^S\phi _{P_{k}}(P_{*})\mathrm {cos}\frac {kx}{L}Q^{\prime \prime }_1(x)-\xi _k^S\phi (P_{*})Q^{\prime \prime }_2(x) \\[3pt]&+\xi _k^S\phi _{P_{k}}(P_{*})\delta _k\sin \frac {kx}{L}Q^{\prime }_1(x) +\delta _k^2\xi _k^S\alpha _k\mathrm {cos}\frac {kx}{L}\left (\phi _{P_{k}}(P_{*})P_1(x)+\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\mathrm {cos}^2\frac {k x}{L}\right )\\[3pt]&+\delta _k\xi _k^S\alpha _k\sin \frac {kx}{L} \left (\phi _{P_{k}}(P_{*})P^{\prime }_1(x)-\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\delta _k\sin \frac {2k x}{L}\right ) +\delta _k^2\xi _2\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L}. \end{align*}
\begin{align*} \Phi (x)=&\delta _k^2\xi _1\phi _{P_{k}}(P_{*})\alpha _k\mathrm {cos}\frac {2kx}{L} -\xi _1\phi (P_{*})Q^{\prime \prime }_1(x)-\xi _k^S\phi _{P_{k}}(P_{*})\mathrm {cos}\frac {kx}{L}Q^{\prime \prime }_1(x)-\xi _k^S\phi (P_{*})Q^{\prime \prime }_2(x) \\[3pt]&+\xi _k^S\phi _{P_{k}}(P_{*})\delta _k\sin \frac {kx}{L}Q^{\prime }_1(x) +\delta _k^2\xi _k^S\alpha _k\mathrm {cos}\frac {kx}{L}\left (\phi _{P_{k}}(P_{*})P_1(x)+\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\mathrm {cos}^2\frac {k x}{L}\right )\\[3pt]&+\delta _k\xi _k^S\alpha _k\sin \frac {kx}{L} \left (\phi _{P_{k}}(P_{*})P^{\prime }_1(x)-\frac {1}{2}\phi _{P_{k}P_{k}}(P_{*})\delta _k\sin \frac {2k x}{L}\right ) +\delta _k^2\xi _2\phi (P_{*})\alpha _k\mathrm {cos}\frac {kx}{L}. \end{align*}
Let us multiply (40) by 
 $\mathrm {cos}\frac {kx}{L}$
 and integrating over
$\mathrm {cos}\frac {kx}{L}$
 and integrating over 
 $(0,L\pi )$
, one yields
$(0,L\pi )$
, one yields
 \begin{align} -\frac {\delta _k^2\pi L\phi (P*)\alpha _k}{2}\xi _2=&\frac {\delta _k^2\xi _k^S}{2}\phi _{P_{k}}(P^{*})\alpha _k\int _0^{L\pi } P_1(x)\left (1-\mathrm {cos}\frac {2k x}{L}\right )dx+\frac {\mathcal {R}_{31}}{2}\int _0^{L\pi } P_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx \\[3pt] \nonumber &+\delta _k^2\xi _k^S\phi _{P_{k}}(P^{*})\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx +\frac {\mathcal {R}_{32}}{2}\int _0^{L\pi } Q_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx \\[3pt]\nonumber &+\left (\mathcal {R}_{33}-d_1\delta _k^2\right )\int _0^{L\pi }P_2(x)\mathrm {cos}\frac {k x}{L}dx +\left (\delta _k^2\xi _k^S\phi _{P_{k}}(P^{*})+\mathcal {R}_{34}\right )\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx \\[3pt]\nonumber &+\frac {\delta _k^2L\pi }{16}\phi _{P_{k}P_{k}}(P*)\xi _k^S\alpha _k+\frac {3L\pi }{8}\mathcal {R}_{35}, \end{align}
\begin{align} -\frac {\delta _k^2\pi L\phi (P*)\alpha _k}{2}\xi _2=&\frac {\delta _k^2\xi _k^S}{2}\phi _{P_{k}}(P^{*})\alpha _k\int _0^{L\pi } P_1(x)\left (1-\mathrm {cos}\frac {2k x}{L}\right )dx+\frac {\mathcal {R}_{31}}{2}\int _0^{L\pi } P_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx \\[3pt] \nonumber &+\delta _k^2\xi _k^S\phi _{P_{k}}(P^{*})\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx +\frac {\mathcal {R}_{32}}{2}\int _0^{L\pi } Q_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx \\[3pt]\nonumber &+\left (\mathcal {R}_{33}-d_1\delta _k^2\right )\int _0^{L\pi }P_2(x)\mathrm {cos}\frac {k x}{L}dx +\left (\delta _k^2\xi _k^S\phi _{P_{k}}(P^{*})+\mathcal {R}_{34}\right )\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx \\[3pt]\nonumber &+\frac {\delta _k^2L\pi }{16}\phi _{P_{k}P_{k}}(P*)\xi _k^S\alpha _k+\frac {3L\pi }{8}\mathcal {R}_{35}, \end{align}
and
 \begin{align} 0=&\left (\mathcal {V}_{34}-d_2\delta _k^2\right )\int _0^{L\pi }Q_2(x)\mathrm {cos}\frac {k x}{L}dx +\frac {\mathcal {V}_{31}}{2}\int _0^{L\pi }P_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx\\[3pt] \nonumber & +\frac {V_{32}}{2}\int _0^{L\pi }Q_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx +\mathcal {V}_{33}\int _0^{L\pi }P_2(x)\mathrm {cos}\frac {k x}{L}dx +\frac {3L\pi }{8}\mathcal {V}_{35}, \end{align}
\begin{align} 0=&\left (\mathcal {V}_{34}-d_2\delta _k^2\right )\int _0^{L\pi }Q_2(x)\mathrm {cos}\frac {k x}{L}dx +\frac {\mathcal {V}_{31}}{2}\int _0^{L\pi }P_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx\\[3pt] \nonumber & +\frac {V_{32}}{2}\int _0^{L\pi }Q_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx +\mathcal {V}_{33}\int _0^{L\pi }P_2(x)\mathrm {cos}\frac {k x}{L}dx +\frac {3L\pi }{8}\mathcal {V}_{35}, \end{align}
where
 \begin{align*} \mathcal {R}_{31}=&f_{PP}+f_{PQ}\alpha _k+f_{PPQ}(Q_{*}+\alpha _kP_{*})+f_{PQQ}Q_{*}\alpha _k +\frac {5 f_{PPP}}{6}P_{*},\\[3pt]\mathcal {R}_{32}=&f_{PQ}+f_{QQ}\alpha _k+\frac {5 \alpha _k f_{QQQ}}{6}Q_{*}+f_{PPQ}P_{*}+f_{PQQ}(\alpha _kP_{*}+Q_{*}), \end{align*}
\begin{align*} \mathcal {R}_{31}=&f_{PP}+f_{PQ}\alpha _k+f_{PPQ}(Q_{*}+\alpha _kP_{*})+f_{PQQ}Q_{*}\alpha _k +\frac {5 f_{PPP}}{6}P_{*},\\[3pt]\mathcal {R}_{32}=&f_{PQ}+f_{QQ}\alpha _k+\frac {5 \alpha _k f_{QQQ}}{6}Q_{*}+f_{PPQ}P_{*}+f_{PQQ}(\alpha _kP_{*}+Q_{*}), \end{align*}
 \begin{align*} \mathcal {R}_{33}=&f_{PP}P_{*}+f_{PQ}Q_{*}+f_{PPQ}P_{*}Q_{*}+\frac {f_{PQQ}}{2}Q_{*}^2+\frac {f_{PPP}}{2}P_{*}^2+f_P,\\[3pt]\mathcal {R}_{34}=&f_{PQ}P_{*}+f_{QQ}Q_{*}+\frac {f_{QQQ}}{2}Q_{*}^2+\frac {f_{PPQ}}{2}P_{*}^2+f_{PQQ}P_{*}Q_{*}+f_Q,\\[3pt]\mathcal {R}_{35}=&\frac {\alpha _k^3 f_{QQQ}}{3!}+\frac {\alpha _kf_{PPQ}}{2}+\frac {\alpha _k^2f_{PQQ}}{2}+\frac {f_{PPP}}{3!}, \end{align*}
\begin{align*} \mathcal {R}_{33}=&f_{PP}P_{*}+f_{PQ}Q_{*}+f_{PPQ}P_{*}Q_{*}+\frac {f_{PQQ}}{2}Q_{*}^2+\frac {f_{PPP}}{2}P_{*}^2+f_P,\\[3pt]\mathcal {R}_{34}=&f_{PQ}P_{*}+f_{QQ}Q_{*}+\frac {f_{QQQ}}{2}Q_{*}^2+\frac {f_{PPQ}}{2}P_{*}^2+f_{PQQ}P_{*}Q_{*}+f_Q,\\[3pt]\mathcal {R}_{35}=&\frac {\alpha _k^3 f_{QQQ}}{3!}+\frac {\alpha _kf_{PPQ}}{2}+\frac {\alpha _k^2f_{PQQ}}{2}+\frac {f_{PPP}}{3!}, \end{align*}
 \begin{align*} \mathcal {V}_{31}=&g_{PP}+g_{PQ}\alpha _k+g_{PPQ}(Q_{*}+P_{*}\alpha _k)+g_{PQQ}P_{*}\alpha _k +\frac {5 g_{PPP}}{6}P^{*},\\[3pt] \mathcal {V}_{32}=&g_{PQ}+g_{QQ}\alpha _k+\frac {5\alpha _k g_{QQQ}}{6}Q_{*}+g_{PPQ}P_{*}+g_{PQQ}(\alpha _kP_{*}+Q_{*}),\\[3pt] \mathcal {V}_{33}=&g_{PP}P_{*}+g_{PQ}Q_{*}+g_{PPQ}P_{*}Q_{*}+\frac {g_{PQQ}}{2}Q_{*}^2+\frac {g_{PPP}}{2}P_{*}^2+g_P,\\[3pt] \mathcal {V}_{34}=&g_{PQ}P_{*}+g_{QQ}Q_{*}+\frac {g_{QQQ}}{2}Q_{*}^2+\frac {g_{PPQ}}{2}P_{*}^2 +g_{PQQ}P_{*}Q_{*}+g_Q,\\[3pt] \mathcal {V}_{35}=&\frac {g_{QQQ}\alpha _k^3}{3!}+\frac {\alpha _k g_{PPQ}}{2}+\frac {\alpha _k^2 g_{PQQ}}{2} +\frac {g_{PPP}}{3!}. \end{align*}
\begin{align*} \mathcal {V}_{31}=&g_{PP}+g_{PQ}\alpha _k+g_{PPQ}(Q_{*}+P_{*}\alpha _k)+g_{PQQ}P_{*}\alpha _k +\frac {5 g_{PPP}}{6}P^{*},\\[3pt] \mathcal {V}_{32}=&g_{PQ}+g_{QQ}\alpha _k+\frac {5\alpha _k g_{QQQ}}{6}Q_{*}+g_{PPQ}P_{*}+g_{PQQ}(\alpha _kP_{*}+Q_{*}),\\[3pt] \mathcal {V}_{33}=&g_{PP}P_{*}+g_{PQ}Q_{*}+g_{PPQ}P_{*}Q_{*}+\frac {g_{PQQ}}{2}Q_{*}^2+\frac {g_{PPP}}{2}P_{*}^2+g_P,\\[3pt] \mathcal {V}_{34}=&g_{PQ}P_{*}+g_{QQ}Q_{*}+\frac {g_{QQQ}}{2}Q_{*}^2+\frac {g_{PPQ}}{2}P_{*}^2 +g_{PQQ}P_{*}Q_{*}+g_Q,\\[3pt] \mathcal {V}_{35}=&\frac {g_{QQQ}\alpha _k^3}{3!}+\frac {\alpha _k g_{PPQ}}{2}+\frac {\alpha _k^2 g_{PQQ}}{2} +\frac {g_{PPP}}{3!}. \end{align*}
On the other hand, by using (8) and 
 $(P_2,Q_2)\in \mathcal {K}$
, we get
$(P_2,Q_2)\in \mathcal {K}$
, we get
 \begin{align} 0=\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx+\alpha _k\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx. \end{align}
\begin{align} 0=\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx+\alpha _k\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx. \end{align}
Obviously, to get the expression of 
 $\xi _2$
 in (41), we have to compute
$\xi _2$
 in (41), we have to compute
 \begin{align*} {\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx},{\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx},{\int _0^{L\pi } P_1(x)dx},\\[3pt] {\int _0^{L\pi } Q_1(x)dx},{\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx},{\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx}. \end{align*}
\begin{align*} {\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx},{\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx},{\int _0^{L\pi } P_1(x)dx},\\[3pt] {\int _0^{L\pi } Q_1(x)dx},{\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx},{\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx}. \end{align*}
To this end, we utilize three steps to finish this task.
 Step 1: Compute 
 $\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx$
 and
$\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx$
 and 
 $\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx$
.
$\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx$
.
In light of (42)–(43), one gets
 \begin{align} \left ( \begin{array}{c@{\quad}c} \mathcal {V}_{33}&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right )\left ( \begin{array}{c} {\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx}\\[3pt] {\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} w\\[3pt] 0 \end{array} \right ), \end{align}
\begin{align} \left ( \begin{array}{c@{\quad}c} \mathcal {V}_{33}&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right )\left ( \begin{array}{c} {\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx}\\[3pt] {\int _0^{L\pi } Q_2(x)\mathrm {cos}\frac {k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} w\\[3pt] 0 \end{array} \right ), \end{align}
where
 \begin{align*} w=-\frac {\mathcal {V}_{31}}{2}\int _0^{L\pi }P_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx -\frac {\mathcal {V}_{32}}{2}\int _0^{L\pi }Q_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx-\frac {3L\pi }{8}\mathcal {V}_{35}. \end{align*}
\begin{align*} w=-\frac {\mathcal {V}_{31}}{2}\int _0^{L\pi }P_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx -\frac {\mathcal {V}_{32}}{2}\int _0^{L\pi }Q_1(x)\left (1+\mathrm {cos}\frac {2k x}{L}\right )dx-\frac {3L\pi }{8}\mathcal {V}_{35}. \end{align*}
By solving (44), we have
 \begin{align} {\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx}=\frac {\left | \begin{array}{c@{\quad}c} w&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 0&\alpha _k \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {V}_{33}&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right |},\ {\int _0^{L\pi }Q_2(x)\mathrm {cos}\frac {k x}{L}dx}=\frac {\left | \begin{array}{c@{\quad}c} \mathcal {V}_{33}&w\\[3pt] 1&0 \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {V}_{33}&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right |}. \end{align}
\begin{align} {\int _0^{L\pi } P_2(x)\mathrm {cos}\frac {k x}{L}dx}=\frac {\left | \begin{array}{c@{\quad}c} w&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 0&\alpha _k \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {V}_{33}&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right |},\ {\int _0^{L\pi }Q_2(x)\mathrm {cos}\frac {k x}{L}dx}=\frac {\left | \begin{array}{c@{\quad}c} \mathcal {V}_{33}&w\\[3pt] 1&0 \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {V}_{33}&\mathcal {V}_{34}-d_2\delta _k^2\\[3pt] 1&\alpha _k \end{array} \right |}. \end{align}
 Step 2: Compute 
 $\int _0^{L\pi } P_1(x)dx$
 and
$\int _0^{L\pi } P_1(x)dx$
 and 
 $\int _0^{L\pi } Q_1(x)dx$
.
$\int _0^{L\pi } Q_1(x)dx$
.
 Integrating (35) over 
 $(0,L\pi )$
, we have
$(0,L\pi )$
, we have
 \begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1{\int _0^{L\pi }\Theta (x)dx+ \int _0^{L\pi }\mathcal {R}_2(x)dx},\\[3pt] 0=d_2 { \int _0^{L\pi }\mathcal {V}_2(x)dx},\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1{\int _0^{L\pi }\Theta (x)dx+ \int _0^{L\pi }\mathcal {R}_2(x)dx},\\[3pt] 0=d_2 { \int _0^{L\pi }\mathcal {V}_2(x)dx},\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0, \end{array}} \right . \end{align}
where we employ
 \begin{align*} \int _0^{L\pi }P^{\prime \prime }_1(x)dx= \int _0^{L\pi }Q_1^{\prime \prime }(x)dx=0. \end{align*}
\begin{align*} \int _0^{L\pi }P^{\prime \prime }_1(x)dx= \int _0^{L\pi }Q_1^{\prime \prime }(x)dx=0. \end{align*}
In addition, we can calculate
 \begin{align} \int _0^{L\pi }\Theta (x)dx= \delta _k^2\xi _k^S\phi _{P_{k}}(P^{*})\alpha _k\int _0^{L\pi }\mathrm {cos}\frac {2kx}{L}dx-\xi _k^S\phi (P^{*})\int _0^{L\pi }Q^{\prime \prime }_1(x)dx=0, \end{align}
\begin{align} \int _0^{L\pi }\Theta (x)dx= \delta _k^2\xi _k^S\phi _{P_{k}}(P^{*})\alpha _k\int _0^{L\pi }\mathrm {cos}\frac {2kx}{L}dx-\xi _k^S\phi (P^{*})\int _0^{L\pi }Q^{\prime \prime }_1(x)dx=0, \end{align}
 \begin{align} \int _0^{L\pi }\mathcal {R}_2(x)dx=\mathcal {R}_{21}\int _0^{L\pi }P_1(x)dx+\mathcal {R}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {R}}_2, \\[6pt] \nonumber \end{align}
\begin{align} \int _0^{L\pi }\mathcal {R}_2(x)dx=\mathcal {R}_{21}\int _0^{L\pi }P_1(x)dx+\mathcal {R}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {R}}_2, \\[6pt] \nonumber \end{align}
and
 \begin{align} \int _0^{L\pi }\mathcal {V}_2(x)dx=\mathcal {V}_{21}\int _0^{L\pi }P_1(x)dx +\mathcal {V}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {V}}_2, \end{align}
\begin{align} \int _0^{L\pi }\mathcal {V}_2(x)dx=\mathcal {V}_{21}\int _0^{L\pi }P_1(x)dx +\mathcal {V}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {V}}_2, \end{align}
where
 \begin{align*} \widetilde {\mathcal {R}}_2=\frac {f_{PP}}{2}+f_{PQ}\alpha _k+\frac {f_{QQ}\alpha _k^2}{2}+\frac {f_{QQQ}\alpha _k^2}{2}Q_{*} +\frac {f_{PPQ}}{2}(2\alpha _kP_{*}+1) +\frac {f_{PQQ}}{2}(2\alpha _kQ_{*}+P_{*}\alpha _k^2) +\frac {f_{PPP}}{2}P_{*},\\[3pt] \widetilde {\mathcal {V}}_2=\frac {g_{PP}}{2}+g_{PQ}\alpha _k+\frac {g_{QQ}\alpha _k^2}{2}+\frac {g_{QQQ}\alpha _k^2}{2}Q_{*} +\frac {g_{PPQ}}{2}(2\alpha _kP_{*}+1) +\frac {g_{PQQ}}{2}(2\alpha _kQ_{*}+P_{*}\alpha _k^2)+\frac {g_{PPP}}{2}P_{*}. \end{align*}
\begin{align*} \widetilde {\mathcal {R}}_2=\frac {f_{PP}}{2}+f_{PQ}\alpha _k+\frac {f_{QQ}\alpha _k^2}{2}+\frac {f_{QQQ}\alpha _k^2}{2}Q_{*} +\frac {f_{PPQ}}{2}(2\alpha _kP_{*}+1) +\frac {f_{PQQ}}{2}(2\alpha _kQ_{*}+P_{*}\alpha _k^2) +\frac {f_{PPP}}{2}P_{*},\\[3pt] \widetilde {\mathcal {V}}_2=\frac {g_{PP}}{2}+g_{PQ}\alpha _k+\frac {g_{QQ}\alpha _k^2}{2}+\frac {g_{QQQ}\alpha _k^2}{2}Q_{*} +\frac {g_{PPQ}}{2}(2\alpha _kP_{*}+1) +\frac {g_{PQQ}}{2}(2\alpha _kQ_{*}+P_{*}\alpha _k^2)+\frac {g_{PPP}}{2}P_{*}. \end{align*}
Consequently, putting (47)–(49) into (46), we can get
 \begin{align} \left \{ {\begin{array}{*{20}{l}} 0={\mathcal {R}_{21}\int _0^{L\pi }P_1(x)dx+\mathcal {R}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {R}}_2},\\[3pt] 0={\mathcal {V}_{21}\int _0^{L\pi }P_1(x)dx +\mathcal {V}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {V}}_2},\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0. \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} 0={\mathcal {R}_{21}\int _0^{L\pi }P_1(x)dx+\mathcal {R}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {R}}_2},\\[3pt] 0={\mathcal {V}_{21}\int _0^{L\pi }P_1(x)dx +\mathcal {V}_{22}\int _0^{L\pi }Q_1(x)dx+\frac {L\pi }{2}\widetilde {\mathcal {V}}_2},\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0. \end{array}} \right . \end{align}
This is
 \begin{align} \left ( \begin{array}{c@{\quad}c} \mathcal {R}_{21}&\mathcal {R}_{22}\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22} \end{array} \right )\left ( \begin{array}{c} {\int _0^{L\pi } P_1(x)dx}\\[3pt] {\int _0^{L\pi } Q_1(x)dx} \end{array} \right )=\left ( \begin{array}{c} -\frac {L\pi }{2}\widetilde {\mathcal {R}}_2\\[3pt] -\frac {L\pi }{2}\widetilde {\mathcal {V}}_2 \end{array} \right ). \end{align}
\begin{align} \left ( \begin{array}{c@{\quad}c} \mathcal {R}_{21}&\mathcal {R}_{22}\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22} \end{array} \right )\left ( \begin{array}{c} {\int _0^{L\pi } P_1(x)dx}\\[3pt] {\int _0^{L\pi } Q_1(x)dx} \end{array} \right )=\left ( \begin{array}{c} -\frac {L\pi }{2}\widetilde {\mathcal {R}}_2\\[3pt] -\frac {L\pi }{2}\widetilde {\mathcal {V}}_2 \end{array} \right ). \end{align}
By solving (51), we obtain
 \begin{align} {\int _0^{L\pi } P_1(x)dx}=\frac {\left | \begin{array}{c@{\quad}c} -\frac {L\pi }{2}\widetilde {\mathcal {R}}_2&\mathcal {R}_{22}\\[3pt] -\frac {L\pi }{2}\widetilde {\mathcal {V}}_2&\mathcal {V}_{22} \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}&\mathcal {R}_{22}\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22} \end{array} \right |},\ {\int _0^{L\pi } Q_1(x)dx}=\frac {\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}&-\frac {L\pi }{2}\widetilde {\mathcal {R}}_2\\[3pt] \mathcal {V}_{21}&-\frac {L\pi }{2}\widetilde {\mathcal {V}}_2 \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}&\mathcal {R}_{22}\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22} \end{array} \right |}. \end{align}
\begin{align} {\int _0^{L\pi } P_1(x)dx}=\frac {\left | \begin{array}{c@{\quad}c} -\frac {L\pi }{2}\widetilde {\mathcal {R}}_2&\mathcal {R}_{22}\\[3pt] -\frac {L\pi }{2}\widetilde {\mathcal {V}}_2&\mathcal {V}_{22} \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}&\mathcal {R}_{22}\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22} \end{array} \right |},\ {\int _0^{L\pi } Q_1(x)dx}=\frac {\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}&-\frac {L\pi }{2}\widetilde {\mathcal {R}}_2\\[3pt] \mathcal {V}_{21}&-\frac {L\pi }{2}\widetilde {\mathcal {V}}_2 \end{array} \right |}{\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}&\mathcal {R}_{22}\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22} \end{array} \right |}. \end{align}
 Step 3: Compute 
 $\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx$
 and
$\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx$
 and 
 $\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx$
.
$\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx$
.
 Multiplying (35) by 
 $\mathrm {cos}\frac {2k x}{L}$
, one yields
$\mathrm {cos}\frac {2k x}{L}$
, one yields
 \begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1{\int _0^{L\pi }P^{\prime \prime }_1(x)\mathrm {cos}\frac {2k x}{L}dx +\int _0^{L\pi }\Theta (x)\mathrm {cos}\frac {2k x}{L}dx+ \int _0^{L\pi }\mathcal {R}_2(x)\mathrm {cos}\frac {2k x}{L}dx},\\[3pt]\ 0=d_2 {\int _0^{L\pi }Q_1^{\prime \prime }(x)+ \int _0^{L\pi }\mathcal {V}_2(x)\mathrm {cos}\frac {2k x}{L}dx},\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0. \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} 0=d_1{\int _0^{L\pi }P^{\prime \prime }_1(x)\mathrm {cos}\frac {2k x}{L}dx +\int _0^{L\pi }\Theta (x)\mathrm {cos}\frac {2k x}{L}dx+ \int _0^{L\pi }\mathcal {R}_2(x)\mathrm {cos}\frac {2k x}{L}dx},\\[3pt]\ 0=d_2 {\int _0^{L\pi }Q_1^{\prime \prime }(x)+ \int _0^{L\pi }\mathcal {V}_2(x)\mathrm {cos}\frac {2k x}{L}dx},\\[3pt] P^{\prime }_1(x)=Q_1^{\prime }(x)=0. \end{array}} \right . \end{align}
We can obtain
 \begin{align} d_1\int _0^{L\pi }P^{\prime \prime }_1(x)\mathrm {cos}\frac {2k x}{L}dx=-4d_1\delta _k^2\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx, \end{align}
\begin{align} d_1\int _0^{L\pi }P^{\prime \prime }_1(x)\mathrm {cos}\frac {2k x}{L}dx=-4d_1\delta _k^2\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx, \end{align}
 \begin{align} d_2\int _0^{L\pi }Q^{\prime \prime }_1(x)\mathrm {cos}\frac {2k x}{L}dx=-4d_2\delta _k^2\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx, \end{align}
\begin{align} d_2\int _0^{L\pi }Q^{\prime \prime }_1(x)\mathrm {cos}\frac {2k x}{L}dx=-4d_2\delta _k^2\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx, \end{align}
 \begin{align} \int _0^{L\pi }\Theta (x)\mathrm {cos}\frac {2k x}{L}dx=4\xi _k^S\phi (P_{*})\delta _k^2\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx +\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k, \end{align}
\begin{align} \int _0^{L\pi }\Theta (x)\mathrm {cos}\frac {2k x}{L}dx=4\xi _k^S\phi (P_{*})\delta _k^2\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx +\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k, \end{align}
 \begin{align} \int _0^{L\pi }\mathcal {R}_2(x)\mathrm {cos}\frac {2k x}{L}dx=\mathcal {R}_{21}\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx+\mathcal {R}_{22}\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx+\frac {L\pi }{4}\widetilde {\mathcal {R}}_2, \end{align}
\begin{align} \int _0^{L\pi }\mathcal {R}_2(x)\mathrm {cos}\frac {2k x}{L}dx=\mathcal {R}_{21}\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx+\mathcal {R}_{22}\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx+\frac {L\pi }{4}\widetilde {\mathcal {R}}_2, \end{align}
and
 \begin{align} \int _0^{L\pi }\mathcal {V}_2(x)\mathrm {cos}\frac {2k x}{L}dx=\mathcal {V}_{21}\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx +\mathcal {V}_{22}\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx+\frac {L\pi }{4}\widetilde {\mathcal {V}}_2. \end{align}
\begin{align} \int _0^{L\pi }\mathcal {V}_2(x)\mathrm {cos}\frac {2k x}{L}dx=\mathcal {V}_{21}\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx +\mathcal {V}_{22}\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx+\frac {L\pi }{4}\widetilde {\mathcal {V}}_2. \end{align}
Then, submitting (54)–(58) into (53), one gets
 \begin{align*} 0 = & \left (\mathcal {R}_{21}-4d_1\delta _k^2\right ) \int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx +\left (\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\right ) \\& \quad \int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx +\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k+\frac {L\pi }{4}\widetilde {\mathcal {R}}_2, \end{align*}
\begin{align*} 0 = & \left (\mathcal {R}_{21}-4d_1\delta _k^2\right ) \int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx +\left (\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\right ) \\& \quad \int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx +\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k+\frac {L\pi }{4}\widetilde {\mathcal {R}}_2, \end{align*}
and
 \begin{align*} 0=\mathcal {V}_{21}{\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx +\left (\mathcal {V}_{22}-\frac {4d_2k^2}{L^2}\right )\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx+\frac {L\pi }{4}\widetilde {\mathcal {V}}_2}. \end{align*}
\begin{align*} 0=\mathcal {V}_{21}{\int _0^{L\pi }P_1(x)\mathrm {cos}\frac {2k x}{L}dx +\left (\mathcal {V}_{22}-\frac {4d_2k^2}{L^2}\right )\int _0^{L\pi }Q_1(x)\mathrm {cos}\frac {2k x}{L}dx+\frac {L\pi }{4}\widetilde {\mathcal {V}}_2}. \end{align*}
We thereby obtain
 \begin{align*} \left ( \begin{array}{c@{\quad}c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2&\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right )\left ( \begin{array}{c@{\quad}c@{\quad}c} {\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx}\\[3pt] {\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} \displaystyle -\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k-\frac {L\pi }{4}\widetilde {\mathcal {R}}_2\\[3pt] \displaystyle -\frac {L\pi \widetilde {\mathcal {V}}_2}{4} \end{array} \right ). \end{align*}
\begin{align*} \left ( \begin{array}{c@{\quad}c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2&\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right )\left ( \begin{array}{c@{\quad}c@{\quad}c} {\int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx}\\[3pt] {\int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} \displaystyle -\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k-\frac {L\pi }{4}\widetilde {\mathcal {R}}_2\\[3pt] \displaystyle -\frac {L\pi \widetilde {\mathcal {V}}_2}{4} \end{array} \right ). \end{align*}
Therefore, one achieves
 \begin{align} \int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx=\frac {\left | \begin{array}{c@{\quad}c} \displaystyle -\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k-\frac {L\pi }{4}\widetilde {\mathcal {R}}_2 & \displaystyle R_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \displaystyle -\frac {L\pi \widetilde {\mathcal {V}}_2}{4}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right |}{\left | \begin{array}{c@{\quad}c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2&\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right |}, \end{align}
\begin{align} \int _0^{L\pi } P_1(x)\mathrm {cos}\frac {2k x}{L}dx=\frac {\left | \begin{array}{c@{\quad}c} \displaystyle -\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k-\frac {L\pi }{4}\widetilde {\mathcal {R}}_2 & \displaystyle R_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \displaystyle -\frac {L\pi \widetilde {\mathcal {V}}_2}{4}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right |}{\left | \begin{array}{c@{\quad}c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2&\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right |}, \end{align}
and
 \begin{align} \int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx=\frac {\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2 & \displaystyle -\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k-\frac {L\pi }{4}\widetilde {\mathcal {R}}_2\\[3pt] \mathcal {V}_{21} & \displaystyle -\frac {L\pi \widetilde {\mathcal {V}}_2}{4} \end{array} \right |}{\left | \begin{array}{c@{\quad}c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2&\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right |}. \end{align}
\begin{align} \int _0^{L\pi } Q_1(x)\mathrm {cos}\frac {2k x}{L}dx=\frac {\left | \begin{array}{c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2 & \displaystyle -\frac {\delta _k^2L\pi }{2}\xi _k^S\phi _{P_{k}}(P_{*})\alpha _k-\frac {L\pi }{4}\widetilde {\mathcal {R}}_2\\[3pt] \mathcal {V}_{21} & \displaystyle -\frac {L\pi \widetilde {\mathcal {V}}_2}{4} \end{array} \right |}{\left | \begin{array}{c@{\quad}c@{\quad}c} \mathcal {R}_{21}-4d_1\delta _k^2&\mathcal {R}_{22}+4\xi _k^S\phi (P_{*})\delta _k^2\\[3pt] \mathcal {V}_{21}&\mathcal {V}_{22}-4d_2\delta _k^2 \end{array} \right |}. \end{align}
Clearly, 
 $\xi _2$
 could be obtained by submitting (45), (52), (59), and (60) into (41).
$\xi _2$
 could be obtained by submitting (45), (52), (59), and (60) into (41).
 Let 
 $\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}}\xi _k^S$
 (see also Lemma3.1), then the validity of the second part of Theorem1.4 can be confirmed. Now, owing to Corollary 1.13 of [Reference Crandall and Rabinowitz9], there exists an interval
$\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}}\xi _k^S$
 (see also Lemma3.1), then the validity of the second part of Theorem1.4 can be confirmed. Now, owing to Corollary 1.13 of [Reference Crandall and Rabinowitz9], there exists an interval 
 $I$
 with
$I$
 with 
 $\xi _{k_0}^S\in I$
 and
$\xi _{k_0}^S\in I$
 and 
 $C^1-$
 smooth function
$C^1-$
 smooth function 
 $(\xi, \varepsilon ):I\times ({-}\varrho, \varrho )\longrightarrow (\lambda _1(\xi ),\lambda _2(\varepsilon ))$
 with
$(\xi, \varepsilon ):I\times ({-}\varrho, \varrho )\longrightarrow (\lambda _1(\xi ),\lambda _2(\varepsilon ))$
 with 
 $\lambda _1(\xi _{k_0}^S)=\lambda _2(0)=0$
 and
$\lambda _1(\xi _{k_0}^S)=\lambda _2(0)=0$
 and
 \begin{align} D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )(P,Q)=\lambda _1(\xi )(P,Q), \end{align}
\begin{align} D_{(P,Q)}\mathcal {F}(P_{*},Q_{*},\xi )(P,Q)=\lambda _1(\xi )(P,Q), \end{align}
and
 \begin{align} D_{(P,Q)}\mathcal {F}(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x),\xi _k^S(\varepsilon ))(P,Q) =\lambda _2(\varepsilon )(P,Q), \end{align}
\begin{align} D_{(P,Q)}\mathcal {F}(P_{k}(\varepsilon, x),Q_{k}(\varepsilon, x),\xi _k^S(\varepsilon ))(P,Q) =\lambda _2(\varepsilon )(P,Q), \end{align}
for 
 $(P,Q)\in \mathbf {X}\times \mathbf {X}$
. It is not difficult to find that
$(P,Q)\in \mathbf {X}\times \mathbf {X}$
. It is not difficult to find that 
 $\lambda _1(\xi )$
 and
$\lambda _1(\xi )$
 and 
 $\lambda _2(\varepsilon )$
 are eigenvalues of (61) and (62), respectively. The eigenfunction of the problem (61) could be represented by
$\lambda _2(\varepsilon )$
 are eigenvalues of (61) and (62), respectively. The eigenfunction of the problem (61) could be represented by 
 $(P(x,\xi ),Q(x,\xi ))$
 and is uniquely described by
$(P(x,\xi ),Q(x,\xi ))$
 and is uniquely described by
 ${(P(x,\xi _{k_0}^S),Q(x,\xi _{k_0}^S))}=\left (\mathrm {cos}\frac {k_0 x}{L},\alpha _{k_0}\mathrm {cos}\frac {k_0 x}{L}\right )$
. Also,
${(P(x,\xi _{k_0}^S),Q(x,\xi _{k_0}^S))}=\left (\mathrm {cos}\frac {k_0 x}{L},\alpha _{k_0}\mathrm {cos}\frac {k_0 x}{L}\right )$
. Also, 
 $(P(x,\xi ),Q(x,\xi ))-\left (\mathrm {cos}\frac {k_0 x}{L},\alpha _{k_0}\mathrm {cos}\frac {k_0 x}{L}\right )\in \mathcal {K}$
 is valid. Now from (6), we know that (61) takes the form
$(P(x,\xi ),Q(x,\xi ))-\left (\mathrm {cos}\frac {k_0 x}{L},\alpha _{k_0}\mathrm {cos}\frac {k_0 x}{L}\right )\in \mathcal {K}$
 is valid. Now from (6), we know that (61) takes the form
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q=\lambda _1(\xi )P,\\[10pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q=\lambda _1(\xi )Q,\\[10pt] P^{\prime }=Q^{\prime }=0. \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1P^{\prime \prime }-\xi (\phi (P_{*}) Q^{\prime })^{\prime } -\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}P +\left [dP_{*}-\frac {bceP_{*}}{(cP_{*}+eQ_{*})^2}\right ]Q=\lambda _1(\xi )P,\\[10pt] \displaystyle d_2 Q^{\prime \prime }-\left [dQ_{*}+\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}\right ]P -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}Q=\lambda _1(\xi )Q,\\[10pt] P^{\prime }=Q^{\prime }=0. \end{array}} \right . \end{align}
Differentiating (63) with respect to 
 $\xi$
 and then setting
$\xi$
 and then setting 
 $\xi =\xi _{k_0}^S$
, one has
$\xi =\xi _{k_0}^S$
, one has
 \begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1\dot {P}^{\prime \prime }-\alpha _{k_0}\phi (P_{*}) \left (\mathrm {cos}\frac {k_0 x}{L}\right )^{\prime \prime }-\xi _{k_0}^S\phi (P_{*}) \dot {Q}^{\prime \prime } +f_P\dot {P}+f_Q\dot {Q}=\dot {\lambda }_1(\xi _{k_0}^S)\mathrm {cos}\frac {k_0 x}{L},\\[3pt] \displaystyle d_2\dot {Q}_2^{\prime \prime }+g_P\dot {P}+g_Q\dot {Q}=\dot {\lambda }_1(\xi _{k_0}^S)\alpha _{k_0}\mathrm {cos}\frac {k_0 x}{L},\\[3pt] \dot {P}^{\prime }=\dot {Q}^{\prime }=0, \end{array}} \right . \end{align}
\begin{align} \left \{ {\begin{array}{*{20}{l}} \displaystyle d_1\dot {P}^{\prime \prime }-\alpha _{k_0}\phi (P_{*}) \left (\mathrm {cos}\frac {k_0 x}{L}\right )^{\prime \prime }-\xi _{k_0}^S\phi (P_{*}) \dot {Q}^{\prime \prime } +f_P\dot {P}+f_Q\dot {Q}=\dot {\lambda }_1(\xi _{k_0}^S)\mathrm {cos}\frac {k_0 x}{L},\\[3pt] \displaystyle d_2\dot {Q}_2^{\prime \prime }+g_P\dot {P}+g_Q\dot {Q}=\dot {\lambda }_1(\xi _{k_0}^S)\alpha _{k_0}\mathrm {cos}\frac {k_0 x}{L},\\[3pt] \dot {P}^{\prime }=\dot {Q}^{\prime }=0, \end{array}} \right . \end{align}
where
 \begin{align*} f_P=-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}, \ f_Q=dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2},\ g_P=-dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}, \ g_Q= -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}. \end{align*}
\begin{align*} f_P=-\frac {bc^2P_{*}}{(cP_{*}+eQ_{*})^2}, \ f_Q=dP_{*}-\frac {becP^{*}}{(cP_{*}+eQ_{*})^2},\ g_P=-dQ_{*}-\frac {bceQ_{*}}{(cP_{*}+eQ_{*})^2}, \ g_Q= -\frac {be^2Q_{*}}{(cP_{*}+eQ_{*})^2}. \end{align*}
As a result, multiplying (64) by 
 $\mathrm {cos}\frac {k_0 x}{L}$
, we have
$\mathrm {cos}\frac {k_0 x}{L}$
, we have
 \begin{align} \left ( \begin{array}{c@{\quad}c} \displaystyle f_P-d_1\delta _{k_0}^2 & \displaystyle f_Q+\delta _{k_0}^2\xi _{k_0}^S\phi (P_{*})\\[6pt] \displaystyle g_P & \displaystyle g_Q-d_2\delta _{k_0}^2 \end{array} \right )\left ( \begin{array}{c} \displaystyle {\int _0^{L\pi } \dot {P}\mathrm {cos}\frac {k_0 x}{L}dx}\\[6pt] \displaystyle {\int _0^{L\pi } \dot {Q}\mathrm {cos}\frac {k_0 x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} \displaystyle \dot {\lambda }_1(\xi _{k_0}^S)\frac {L\pi }{2}-\frac {\delta _{k_0}^2\alpha _{k_0}\phi (P_{*})L\pi }{2}\\[6pt] \displaystyle \dot {\lambda }_1(\xi _{k_0}^S)\alpha _{k_0}\frac {L\pi }{2} \end{array} \right ). \end{align}
\begin{align} \left ( \begin{array}{c@{\quad}c} \displaystyle f_P-d_1\delta _{k_0}^2 & \displaystyle f_Q+\delta _{k_0}^2\xi _{k_0}^S\phi (P_{*})\\[6pt] \displaystyle g_P & \displaystyle g_Q-d_2\delta _{k_0}^2 \end{array} \right )\left ( \begin{array}{c} \displaystyle {\int _0^{L\pi } \dot {P}\mathrm {cos}\frac {k_0 x}{L}dx}\\[6pt] \displaystyle {\int _0^{L\pi } \dot {Q}\mathrm {cos}\frac {k_0 x}{L}dx} \end{array} \right )=\left ( \begin{array}{c} \displaystyle \dot {\lambda }_1(\xi _{k_0}^S)\frac {L\pi }{2}-\frac {\delta _{k_0}^2\alpha _{k_0}\phi (P_{*})L\pi }{2}\\[6pt] \displaystyle \dot {\lambda }_1(\xi _{k_0}^S)\alpha _{k_0}\frac {L\pi }{2} \end{array} \right ). \end{align}
Obviously, the coefficient matrix in (65) is singular since 
 $\xi =\xi _{k_0}^S$
. This implies that
$\xi =\xi _{k_0}^S$
. This implies that
 \begin{align*} \frac {f_P-d_1\delta _{k_0}^2}{g_P}= \frac {\dot {\lambda }_1(\xi _{k_0}^S)-\delta _{k_0}^2\alpha _{k_0}\phi (P_{*})} {\dot {\lambda }_1(\xi _{k_0}^S)\alpha _{k_0}}. \end{align*}
\begin{align*} \frac {f_P-d_1\delta _{k_0}^2}{g_P}= \frac {\dot {\lambda }_1(\xi _{k_0}^S)-\delta _{k_0}^2\alpha _{k_0}\phi (P_{*})} {\dot {\lambda }_1(\xi _{k_0}^S)\alpha _{k_0}}. \end{align*}
Consequently, one obtains
 \begin{align*} \dot {\lambda }_1(\xi _{k_0}^S)=-\frac {\delta _{k_0}^2\alpha _{k_0}\phi (P_{*})g_P}{(f_P-d_1\delta _{k_0}^2)\alpha _{k_0}-g_P}\lt 0. \end{align*}
\begin{align*} \dot {\lambda }_1(\xi _{k_0}^S)=-\frac {\delta _{k_0}^2\alpha _{k_0}\phi (P_{*})g_P}{(f_P-d_1\delta _{k_0}^2)\alpha _{k_0}-g_P}\lt 0. \end{align*}
Using Theorem 1.16 of [Reference Crandall and Rabinowitz9], 
 $\lambda _2(\varepsilon )$
 and
$\lambda _2(\varepsilon )$
 and 
 $-\varepsilon \xi ^{\prime S}_{k_0}(\varepsilon )\dot {\lambda }_1(\xi _{k_0}^S)$
 have the same sign near
$-\varepsilon \xi ^{\prime S}_{k_0}(\varepsilon )\dot {\lambda }_1(\xi _{k_0}^S)$
 have the same sign near 
 $\varepsilon =0$
. As a result, we can compute
$\varepsilon =0$
. As a result, we can compute 
 $\textrm {Sign}(\lambda _2(\varepsilon ))=\textrm {Sign}({-}\varepsilon \xi ^{\prime S}_{k_0}(\varepsilon )\dot {\lambda }_1(\xi _{k_0}^S)) =\textrm {Sign}({-}2\varepsilon ^2\xi _2\dot {\lambda }_1(\xi _{k_0}^S))=\textrm {Sign}(\xi _2)$
. This means that the bifurcating solution
$\textrm {Sign}(\lambda _2(\varepsilon ))=\textrm {Sign}({-}\varepsilon \xi ^{\prime S}_{k_0}(\varepsilon )\dot {\lambda }_1(\xi _{k_0}^S)) =\textrm {Sign}({-}2\varepsilon ^2\xi _2\dot {\lambda }_1(\xi _{k_0}^S))=\textrm {Sign}(\xi _2)$
. This means that the bifurcating solution 
 $\mathcal {S}_{k_0}(\varepsilon )=(P_{k_0}(\varepsilon, x),Q_{k_0}(\varepsilon, x))$
 is asymptotically stable when
$\mathcal {S}_{k_0}(\varepsilon )=(P_{k_0}(\varepsilon, x),Q_{k_0}(\varepsilon, x))$
 is asymptotically stable when 
 $\xi _2\lt 0$
 and it is unstable when
$\xi _2\lt 0$
 and it is unstable when 
 $\xi _2\gt 0$
 for
$\xi _2\gt 0$
 for 
 $\varepsilon \in ({-}\varrho, \varrho )$
. The proof readily follows.
$\varepsilon \in ({-}\varrho, \varrho )$
. The proof readily follows.
4. Numerical simulations
 In this section, we will describe the numerical solution algorithms to solve the IGP-type predator–prey model (1). We shall conduct various computational simulations to confirm the validity of Theorem1.4. Our main aim is to perform simulations for the stable nonconstant steady states around the steady state bifurcation onset 
 $\xi =\xi _{k_0}^S$
. More precisely, we want to find not only the nonconstant steady states in traditional 1D and 2D domains but also on spherical and torus surfaces. Now, some specific parameters in (1) are fixed
$\xi =\xi _{k_0}^S$
. More precisely, we want to find not only the nonconstant steady states in traditional 1D and 2D domains but also on spherical and torus surfaces. Now, some specific parameters in (1) are fixed
 \begin{align} e=1,\alpha =1.5,c=1, \beta =0.2,h=0.05,d=0.85,b=0.65, d_1=0.85, d_2=0.5. \end{align}
\begin{align} e=1,\alpha =1.5,c=1, \beta =0.2,h=0.05,d=0.85,b=0.65, d_1=0.85, d_2=0.5. \end{align}
4.1 Nonconstant steady states exist in 1D space
 Let us consider a one-dimensional space 
 $\Omega = (0,L_x)$
. By using a cell-centered grid, the uniform discrete computational domain is defined as
$\Omega = (0,L_x)$
. By using a cell-centered grid, the uniform discrete computational domain is defined as 
 $\Omega _d = \big \{ x_i\vert (i-0.5)\Delta x,\,1\leq i \leq N_x\big \}$
, where
$\Omega _d = \big \{ x_i\vert (i-0.5)\Delta x,\,1\leq i \leq N_x\big \}$
, where 
 $\Delta x = L_x/N_x$
 and
$\Delta x = L_x/N_x$
 and 
 $N_x$
 is the number of discrete points. Numerical approximations
$N_x$
 is the number of discrete points. Numerical approximations 
 $P(x_i,n\Delta t)$
 and
$P(x_i,n\Delta t)$
 and 
 $Q(x_i,n\Delta t)$
 are denoted by
$Q(x_i,n\Delta t)$
 are denoted by 
 $P_i^n$
 and
$P_i^n$
 and 
 $Q_i^n$
, respectively. Here,
$Q_i^n$
, respectively. Here, 
 $\Delta t$
 is time step size and
$\Delta t$
 is time step size and 
 $n=0,1,\cdots$
. On the discrete computational domain
$n=0,1,\cdots$
. On the discrete computational domain 
 $\Omega _d$
, the IGP-type predator–prey model (1) can be discretized using the explicit Euler method as follows:
$\Omega _d$
, the IGP-type predator–prey model (1) can be discretized using the explicit Euler method as follows:
 \begin{eqnarray*} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {P_i^{n+1}-P_i^n}{\Delta t} = d_1 \Delta _d P_i^n - \nabla _d \cdot \big (\xi \phi (P_i^n)\nabla _d Q_i^n\big ) + P_i^n \left (\frac {bc}{cP_i^n+eQ_i^n}+dQ_i^n-\alpha \right ),\\[10pt] \displaystyle \frac {Q_i^{n+1}-Q_i^n}{\Delta t} = d_2 \Delta _d Q_i^n + P_i^n \left (\frac {be}{cP_i^n+eQ_i^n}-dP_i^n-\beta \right )-hQ_i^n, \end{array}} \right . \end{eqnarray*}
\begin{eqnarray*} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {P_i^{n+1}-P_i^n}{\Delta t} = d_1 \Delta _d P_i^n - \nabla _d \cdot \big (\xi \phi (P_i^n)\nabla _d Q_i^n\big ) + P_i^n \left (\frac {bc}{cP_i^n+eQ_i^n}+dQ_i^n-\alpha \right ),\\[10pt] \displaystyle \frac {Q_i^{n+1}-Q_i^n}{\Delta t} = d_2 \Delta _d Q_i^n + P_i^n \left (\frac {be}{cP_i^n+eQ_i^n}-dP_i^n-\beta \right )-hQ_i^n, \end{array}} \right . \end{eqnarray*}
where 
 $ \Delta _d P_i^n = (P_{i+1}^n-2P_i^n+P_{i-1}^n)/\Delta x^2$
 and
$ \Delta _d P_i^n = (P_{i+1}^n-2P_i^n+P_{i-1}^n)/\Delta x^2$
 and 
 $\Delta _d Q_i^n=(Q_{i+1}^n-2Q_i^n+Q_{i-1}^n)/\Delta x^2$
 are the discrete Laplacian operators [Reference Kwak, Kang, Ham, Hwang, Lee and Kim23]. We use the conservative discretization for the term
$\Delta _d Q_i^n=(Q_{i+1}^n-2Q_i^n+Q_{i-1}^n)/\Delta x^2$
 are the discrete Laplacian operators [Reference Kwak, Kang, Ham, Hwang, Lee and Kim23]. We use the conservative discretization for the term 
 $\nabla _d \cdot \big (\xi \phi (P_i^n)\nabla _d Q_i^n\big )$
 as follows:
$\nabla _d \cdot \big (\xi \phi (P_i^n)\nabla _d Q_i^n\big )$
 as follows:
 \begin{eqnarray*} \nabla _d \cdot \big (\xi \phi (P_i^n)\nabla _d Q_i^n\big ) = \frac {\xi }{\Delta x^2}\bigg [\phi (P_{i+\frac {1}{2}}^n)(Q_{i+1}^n-Q_i^n)-\phi (P_{i-\frac {1}{2}}^n)(Q_i^n-Q_{i-1,j}^n)\bigg ], \end{eqnarray*}
\begin{eqnarray*} \nabla _d \cdot \big (\xi \phi (P_i^n)\nabla _d Q_i^n\big ) = \frac {\xi }{\Delta x^2}\bigg [\phi (P_{i+\frac {1}{2}}^n)(Q_{i+1}^n-Q_i^n)-\phi (P_{i-\frac {1}{2}}^n)(Q_i^n-Q_{i-1,j}^n)\bigg ], \end{eqnarray*}
where 
 $P_{i+\frac {1}{2}} = (P_{i+1,j}+P_i)/2$
 and
$P_{i+\frac {1}{2}} = (P_{i+1,j}+P_i)/2$
 and 
 $P_{i-\frac {1}{2}} = (P_{i}+P_{i-1})/2.$
$P_{i-\frac {1}{2}} = (P_{i}+P_{i-1})/2.$
 We numerically solve the model (1) to validate the nonconstant steady-state solution in a one-dimensional space 
 $\Omega = (0,8\pi )$
 with
$\Omega = (0,8\pi )$
 with 
 $N_x=256$
 points, a uniform spatial grid size of
$N_x=256$
 points, a uniform spatial grid size of 
 $\Delta x=8\pi /N_x$
, and a time step of
$\Delta x=8\pi /N_x$
, and a time step of 
 $\Delta t=0.2\Delta x^2$
. First, let us take the density function
$\Delta t=0.2\Delta x^2$
. First, let us take the density function 
 $\phi (P)=P$
. Clearly, the assumption (H2) is satisfied. Next, we choose the parameters in (66) and the spatial domain
$\phi (P)=P$
. Clearly, the assumption (H2) is satisfied. Next, we choose the parameters in (66) and the spatial domain 
 $\Omega =(0,8\pi )$
. Then, we know that (H3) holds, namely, there is a unique positive equilibrium
$\Omega =(0,8\pi )$
. Then, we know that (H3) holds, namely, there is a unique positive equilibrium 
 $E_{*}=(0.2259,1.2447)$
 and
$E_{*}=(0.2259,1.2447)$
 and
 \begin{align*} &\xi _1^S\approx -41.2976,\ \xi _2^S\approx -11.2173,\ \xi _3^S\approx -5.7382,\ \xi _4^S\approx -3.9282,\ \xi _5^S\approx -3.2087,\\[3pt] &\xi _6^S\approx -2.9433,\ \xi _7^S\approx -2.9140,\ \xi _8^S\approx -3.0297,\ \xi _9^S\approx -3.2469,\ \xi _{10}^S\approx -3.5427,\\[3pt] &\xi _{11}^S\approx -3.9040,\ \xi _{12}^S\approx -4.3231,\ \xi _{13}^S\approx -4.7950,\ \xi _{14}^S\approx -5.3165, \ \cdots . \end{align*}
\begin{align*} &\xi _1^S\approx -41.2976,\ \xi _2^S\approx -11.2173,\ \xi _3^S\approx -5.7382,\ \xi _4^S\approx -3.9282,\ \xi _5^S\approx -3.2087,\\[3pt] &\xi _6^S\approx -2.9433,\ \xi _7^S\approx -2.9140,\ \xi _8^S\approx -3.0297,\ \xi _9^S\approx -3.2469,\ \xi _{10}^S\approx -3.5427,\\[3pt] &\xi _{11}^S\approx -3.9040,\ \xi _{12}^S\approx -4.3231,\ \xi _{13}^S\approx -4.7950,\ \xi _{14}^S\approx -5.3165, \ \cdots . \end{align*}
Consequently, we have 
 $\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}} \xi _k^S=-2.9140$
. To display the stable nonconstant steady states, we choose
$\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}} \xi _k^S=-2.9140$
. To display the stable nonconstant steady states, we choose 
 $-3.5=\xi \lt \xi _{k_0}^S$
 and the initial data
$-3.5=\xi \lt \xi _{k_0}^S$
 and the initial data 
 $(P_0(x),Q_0(x))=(0.2259-0.02 \mathrm {cos}\left (\frac {7 x}{8}\right ),1.2447-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ))$
. Our numerical simulations indicate that there are stable nonconstant steady states, see Figure 1, where pictures (a)–(b) for predator
$(P_0(x),Q_0(x))=(0.2259-0.02 \mathrm {cos}\left (\frac {7 x}{8}\right ),1.2447-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ))$
. Our numerical simulations indicate that there are stable nonconstant steady states, see Figure 1, where pictures (a)–(b) for predator 
 $P(x,t)$
 and prey
$P(x,t)$
 and prey 
 $Q(x,t)$
 and picture (c) for their space series diagrams.
$Q(x,t)$
 and picture (c) for their space series diagrams.
 In the sequel, we assume that the density function 
 $\phi (P)$
 satisfies the saturated effect, i.e., one takes
$\phi (P)$
 satisfies the saturated effect, i.e., one takes 
 $\phi (P)=\frac {P}{1+P}$
. We can show that
$\phi (P)=\frac {P}{1+P}$
. We can show that 
 $\phi (P)=\frac {P}{1+P}\lt P$
 and the condition (H2) is satisfied. For the parameters performed in (66) and the spatial length
$\phi (P)=\frac {P}{1+P}\lt P$
 and the condition (H2) is satisfied. For the parameters performed in (66) and the spatial length 
 $\Omega =(0,8\pi )$
. Then, we know that (H3) holds, namely, there exists a unique positive equilibrium
$\Omega =(0,8\pi )$
. Then, we know that (H3) holds, namely, there exists a unique positive equilibrium 
 $E_{*}=(0.2259,1.2447)$
 and
$E_{*}=(0.2259,1.2447)$
 and
 \begin{align*} &\xi _1^S\approx -50.6260,\ \xi _2^S\approx -13.7511,\ \xi _3^S\approx -7.0343,\ \xi _4^S\approx -4.8155,\ \xi _5^S\approx -3.9335,\\[3pt] &\xi _6^S\approx -3.6082,\ \xi _7^S\approx -3.5722,\ \xi _8^S\approx -3.7141,\ \xi _9^S\approx -3.9803,\ \xi _{10}^S\approx -4.3429,\\[3pt] &\xi _{11}^S\approx -4.7858,\ \xi _{12}^S\approx -5.2996,\ \xi _{13}^S\approx -5.8781,\ \xi _{14}^S\approx -6.5174,\ \cdots . \end{align*}
\begin{align*} &\xi _1^S\approx -50.6260,\ \xi _2^S\approx -13.7511,\ \xi _3^S\approx -7.0343,\ \xi _4^S\approx -4.8155,\ \xi _5^S\approx -3.9335,\\[3pt] &\xi _6^S\approx -3.6082,\ \xi _7^S\approx -3.5722,\ \xi _8^S\approx -3.7141,\ \xi _9^S\approx -3.9803,\ \xi _{10}^S\approx -4.3429,\\[3pt] &\xi _{11}^S\approx -4.7858,\ \xi _{12}^S\approx -5.2996,\ \xi _{13}^S\approx -5.8781,\ \xi _{14}^S\approx -6.5174,\ \cdots . \end{align*}
 Accordingly, 
 $\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}}\xi _k^S=-3.5722$
. To display the stable nonconstant steady states, we choose
$\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0\backslash \{0\}}\xi _k^S=-3.5722$
. To display the stable nonconstant steady states, we choose 
 $-3.75=\xi \lt \xi _{k_0}^S$
 and the initial data
$-3.75=\xi \lt \xi _{k_0}^S$
 and the initial data 
 $(P_0(x),Q_0(x))=(0.2259-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ),1.2447-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ))$
. Then, the numerical simulations show that there are stable nonconstant steady states because the density function
$(P_0(x),Q_0(x))=(0.2259-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ),1.2447-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ))$
. Then, the numerical simulations show that there are stable nonconstant steady states because the density function 
 $\phi (P)$
 takes the saturated form, see Figure 2, where pictures (a)–(b) for predator
$\phi (P)$
 takes the saturated form, see Figure 2, where pictures (a)–(b) for predator 
 $P(x,t)$
 and prey
$P(x,t)$
 and prey 
 $Q(x,t)$
 and picture (c) for their space series diagrams.
$Q(x,t)$
 and picture (c) for their space series diagrams.

Figure 2. Taking the density function 
 $\phi (P)=\frac {P}{1+P},\xi =-3.75$
 and the other parameters are fixed in (66), system (1) admits the stable nonconstant steady states, where the initial data
$\phi (P)=\frac {P}{1+P},\xi =-3.75$
 and the other parameters are fixed in (66), system (1) admits the stable nonconstant steady states, where the initial data 
 $(P_0(x),Q_0(x))=(0.2259-0.02\mathrm {cos}(\frac {7 x}{8}),1.2447-0.02\mathrm {cos}(\frac {7 x}{8}))$
.
$(P_0(x),Q_0(x))=(0.2259-0.02\mathrm {cos}(\frac {7 x}{8}),1.2447-0.02\mathrm {cos}(\frac {7 x}{8}))$
.
 Next, let us suppose that the density function 
 $\phi (P)$
 with the Ricker effect, specifically,
$\phi (P)$
 with the Ricker effect, specifically, 
 $\phi (P)=Pe^{-P}$
. Clearly, the condition (H2) is satisfied. Now, we maintain the same parameters and the spatial length as in Figures 1 and 2. Then, the unique positive equilibrium
$\phi (P)=Pe^{-P}$
. Clearly, the condition (H2) is satisfied. Now, we maintain the same parameters and the spatial length as in Figures 1 and 2. Then, the unique positive equilibrium 
 $E_{*}=(0.2259,1.2447)$
 and
$E_{*}=(0.2259,1.2447)$
 and
 \begin{align*} &\xi _1^S\approx -51.7636,\ \xi _2^S\approx -14.0601,\ \xi _3^S\approx -7.1924,\ \xi _4^S\approx -4.9237,\ \xi _5^S\approx -4.0219,\\[3pt] &\xi _6^S\approx -3.6892,\ \xi _7^S\approx -3.6525,\ \xi _8^S\approx -3.7975,\ \xi _9^S\approx -4.0697,\ \xi _{10}^S\approx -4.4405,\\[3pt] &\xi _{11}^S\approx -4.8934,\ \xi _{12}^S\approx -5.4187,\ \xi _{13}^S\approx -6.0102,\ \xi _{14}^S\approx -6.6639,\ \cdots . \end{align*}
\begin{align*} &\xi _1^S\approx -51.7636,\ \xi _2^S\approx -14.0601,\ \xi _3^S\approx -7.1924,\ \xi _4^S\approx -4.9237,\ \xi _5^S\approx -4.0219,\\[3pt] &\xi _6^S\approx -3.6892,\ \xi _7^S\approx -3.6525,\ \xi _8^S\approx -3.7975,\ \xi _9^S\approx -4.0697,\ \xi _{10}^S\approx -4.4405,\\[3pt] &\xi _{11}^S\approx -4.8934,\ \xi _{12}^S\approx -5.4187,\ \xi _{13}^S\approx -6.0102,\ \xi _{14}^S\approx -6.6639,\ \cdots . \end{align*}
 It is found that 
 $\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0 \backslash \{0\}} \xi _k^S=-3.6525$
. We choose
$\xi _{k_0}^S=\mathrm {max}_{k\in \mathbb {N}_0 \backslash \{0\}} \xi _k^S=-3.6525$
. We choose 
 $-3.85=\xi \lt \xi _{k_0}^S$
 and the initial data
$-3.85=\xi \lt \xi _{k_0}^S$
 and the initial data 
 $(P_0(x),Q_0(x))=(0.2259-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ),1.2447-0.02 \mathrm {cos}\left (\frac {7 x}{8}\right ))$
. Then, numerical simulations show that there are stable nonconstant steady states, as shown in Figure 3, where pictures (a)–(b) for predator
$(P_0(x),Q_0(x))=(0.2259-0.02\mathrm {cos}\left (\frac {7 x}{8}\right ),1.2447-0.02 \mathrm {cos}\left (\frac {7 x}{8}\right ))$
. Then, numerical simulations show that there are stable nonconstant steady states, as shown in Figure 3, where pictures (a)–(b) for predator 
 $P(x,t)$
 and prey
$P(x,t)$
 and prey 
 $Q(x,t)$
 and picture (c) for their space series diagrams.
$Q(x,t)$
 and picture (c) for their space series diagrams.
4.2 Nonconstant steady states exist in 2D space
 In this subsection, we investigate nonconstant steady states in the two-dimensional computational domain 
 $\Omega = (0,L_x)\times (0,L_y)$
. We define the discrete computational domain
$\Omega = (0,L_x)\times (0,L_y)$
. We define the discrete computational domain 
 $\Omega _d = \big \{(x_i,y_j)\vert \big ( (i-0.5)\Delta x,\,(j-0.5)\Delta y),\,1\leq i\leq N_x,\,1\leq j \leq N_y\big \}$
, where
$\Omega _d = \big \{(x_i,y_j)\vert \big ( (i-0.5)\Delta x,\,(j-0.5)\Delta y),\,1\leq i\leq N_x,\,1\leq j \leq N_y\big \}$
, where 
 $\Delta x =L_x/N_x$
 and
$\Delta x =L_x/N_x$
 and 
 $\Delta y = L_y/N_y$
; and
$\Delta y = L_y/N_y$
; and 
 $N_x$
 and
$N_x$
 and 
 $N_y$
 are the number of grid points in the
$N_y$
 are the number of grid points in the 
 $x$
- and
$x$
- and 
 $y$
-directions, respectively. Numerical approximations
$y$
-directions, respectively. Numerical approximations 
 $P(x_i,y_j,n\Delta t)$
 and
$P(x_i,y_j,n\Delta t)$
 and 
 $Q(x_i,y_j,n\Delta t)$
 are denoted by
$Q(x_i,y_j,n\Delta t)$
 are denoted by 
 $P_{ij}^n$
 and
$P_{ij}^n$
 and 
 $Q_{ij}^n$
, respectively. Here,
$Q_{ij}^n$
, respectively. Here, 
 $\Delta t$
 is time step size and
$\Delta t$
 is time step size and 
 $n=0,1,\cdots$
. By using the explicit Euler method, the IGP-type predator– prey model (1) in the two-dimensional domain can be discretized as follows:
$n=0,1,\cdots$
. By using the explicit Euler method, the IGP-type predator– prey model (1) in the two-dimensional domain can be discretized as follows:
 \begin{eqnarray} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {P_{ij}^{n+1} - P_{ij}^n}{\Delta t} = d_1 \Delta _d P_{ij}^n - \nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n) + P_{ij}^n\left (\frac {bc}{cP_{ij}^n+eQ_{ij}^n}+dQ_{ij}^n-\alpha \right ),\\[3pt] \displaystyle \frac {Q_{ij}^{n+1} - Q_{ij}^n}{\Delta t} = d_2 \Delta _d Q_{ij}^n + Q_{ij}^n\left (\frac {be}{cP_{ij}^n+eQ_{ij}^n}-dP_{ij}^n-\beta \right )-hQ_{ij}^n, \end{array}} \right . \end{eqnarray}
\begin{eqnarray} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {P_{ij}^{n+1} - P_{ij}^n}{\Delta t} = d_1 \Delta _d P_{ij}^n - \nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n) + P_{ij}^n\left (\frac {bc}{cP_{ij}^n+eQ_{ij}^n}+dQ_{ij}^n-\alpha \right ),\\[3pt] \displaystyle \frac {Q_{ij}^{n+1} - Q_{ij}^n}{\Delta t} = d_2 \Delta _d Q_{ij}^n + Q_{ij}^n\left (\frac {be}{cP_{ij}^n+eQ_{ij}^n}-dP_{ij}^n-\beta \right )-hQ_{ij}^n, \end{array}} \right . \end{eqnarray}
where the two-dimensional discrete Laplacian operators are defined as follows [Reference Lee, Kim and Kwak24]:
 \begin{eqnarray*} \Delta _d P_{ij}^n = \frac {P_{i+1,j}^n-2P_{ij}^n+P_{i-1,j}^n}{\Delta x^2}+\frac {P_{i,j+1}^n-2P_{ij}^n+P_{i,j-1}^n}{\Delta y^2} \end{eqnarray*}
\begin{eqnarray*} \Delta _d P_{ij}^n = \frac {P_{i+1,j}^n-2P_{ij}^n+P_{i-1,j}^n}{\Delta x^2}+\frac {P_{i,j+1}^n-2P_{ij}^n+P_{i,j-1}^n}{\Delta y^2} \end{eqnarray*}
and
 \begin{eqnarray*} \Delta _d Q_{ij}^n = \frac {Q_{i+1,j}^n-2Q_{ij}^n+Q_{i-1,j}^n}{\Delta x^2}+\frac {Q_{i,j+1}^n-2Q_{ij}^n+Q_{i,j-1}^n}{\Delta y^2}. \end{eqnarray*}
\begin{eqnarray*} \Delta _d Q_{ij}^n = \frac {Q_{i+1,j}^n-2Q_{ij}^n+Q_{i-1,j}^n}{\Delta x^2}+\frac {Q_{i,j+1}^n-2Q_{ij}^n+Q_{i,j-1}^n}{\Delta y^2}. \end{eqnarray*}
We use the conservative form to define the term 
 $\nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n)$
 as follows:
$\nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n)$
 as follows:
 \begin{eqnarray*} \nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n) &=&\xi \bigg [\frac {1}{\Delta x^2}\Big \{\phi (P_{i+\frac {1}{2},j}^n)(Q_{i+1,j}^n-Q_{ij}^n)-\phi (P_{i-\frac {1}{2},j}^n)(Q_{ij}^n-Q_{i-1,j}^n)\Big \}\\[3pt] &&+\frac {1}{\Delta y^2}\Big \{\phi (P_{i,j+\frac {1}{2}}^n)(Q_{i,j+1}^n-Q_{ij}^n)-\phi (P_{i,j-\frac {1}{2}}^n)(Q_{ij}^n-Q_{i,j-1}^n)\Big \}\bigg ], \end{eqnarray*}
\begin{eqnarray*} \nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n) &=&\xi \bigg [\frac {1}{\Delta x^2}\Big \{\phi (P_{i+\frac {1}{2},j}^n)(Q_{i+1,j}^n-Q_{ij}^n)-\phi (P_{i-\frac {1}{2},j}^n)(Q_{ij}^n-Q_{i-1,j}^n)\Big \}\\[3pt] &&+\frac {1}{\Delta y^2}\Big \{\phi (P_{i,j+\frac {1}{2}}^n)(Q_{i,j+1}^n-Q_{ij}^n)-\phi (P_{i,j-\frac {1}{2}}^n)(Q_{ij}^n-Q_{i,j-1}^n)\Big \}\bigg ], \end{eqnarray*}
where 
 $ P_{i+\frac {1}{2},j} = \left (P_{i+1,j}+P_{ij}\right )/2, \ P_{i,j+\frac {1}{2}} = \left (P_{i,j+1}+P_{ij}\right )/2, \ P_{i-\frac {1}{2},j} = \left (P_{ij}+P_{i-1,j}\right )/2, \ P_{i,j-\frac {1}{2}} = \left (P_{ij}+P_{i,j-1}\right )/2.$
 From Eqs. (67), we can obtain numerical solutions as
$ P_{i+\frac {1}{2},j} = \left (P_{i+1,j}+P_{ij}\right )/2, \ P_{i,j+\frac {1}{2}} = \left (P_{i,j+1}+P_{ij}\right )/2, \ P_{i-\frac {1}{2},j} = \left (P_{ij}+P_{i-1,j}\right )/2, \ P_{i,j-\frac {1}{2}} = \left (P_{ij}+P_{i,j-1}\right )/2.$
 From Eqs. (67), we can obtain numerical solutions as
 \begin{eqnarray*} \left \{ {\begin{array}{*{20}{l}} \displaystyle P_{ij}^{n+1}= P_{ij}^n +{\Delta t}\left [ d_1 \Delta _d P_{ij}^n - \nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n) + P_{ij}^n\left (\frac {bc}{cP_{ij}^n+eQ_{ij}^n}+dQ_{ij}^n-\alpha \right )\right ],\\[3pt] \displaystyle Q_{ij}^{n+1} = Q_{ij}^n + {\Delta t}\left [ d_2 \Delta _d Q_{ij}^n + Q_{ij}^n\left (\frac {be}{cP_{ij}^n+eQ_{ij}^n}-dP_{ij}^n-\beta \right )-hQ_{ij}^n\right ]. \end{array}} \right . \end{eqnarray*}
\begin{eqnarray*} \left \{ {\begin{array}{*{20}{l}} \displaystyle P_{ij}^{n+1}= P_{ij}^n +{\Delta t}\left [ d_1 \Delta _d P_{ij}^n - \nabla _d \cdot (\xi \phi (P_{ij}^n)\nabla _d Q_{ij}^n) + P_{ij}^n\left (\frac {bc}{cP_{ij}^n+eQ_{ij}^n}+dQ_{ij}^n-\alpha \right )\right ],\\[3pt] \displaystyle Q_{ij}^{n+1} = Q_{ij}^n + {\Delta t}\left [ d_2 \Delta _d Q_{ij}^n + Q_{ij}^n\left (\frac {be}{cP_{ij}^n+eQ_{ij}^n}-dP_{ij}^n-\beta \right )-hQ_{ij}^n\right ]. \end{array}} \right . \end{eqnarray*}
 For the two-dimensional numerical simulations, discrete 
 $l_2$
-errors for
$l_2$
-errors for 
 $P$
 and
$P$
 and 
 $Q$
 are defined as
$Q$
 are defined as
 \begin{eqnarray*} E_P^{n} = \sqrt {\frac {1}{N_x N_y} \sum _{i=1}^{N_x} \sum _{j=1}^{N_y} (P_{ij}^{n}-P_{ij}^{n-1})^2}\ \textrm {and}\ E_Q^{n} = \sqrt {\frac {1}{N_x N_y} \sum _{i=1}^{N_x} \sum _{j=1}^{N_y} (Q_{ij}^{n}-Q_{ij}^{n-1})^2}, \end{eqnarray*}
\begin{eqnarray*} E_P^{n} = \sqrt {\frac {1}{N_x N_y} \sum _{i=1}^{N_x} \sum _{j=1}^{N_y} (P_{ij}^{n}-P_{ij}^{n-1})^2}\ \textrm {and}\ E_Q^{n} = \sqrt {\frac {1}{N_x N_y} \sum _{i=1}^{N_x} \sum _{j=1}^{N_y} (Q_{ij}^{n}-Q_{ij}^{n-1})^2}, \end{eqnarray*}
respectively. We define the numerical steady states 
 $P^s$
 and
$P^s$
 and 
 $Q^s$
 when the average of errors is less than a tolerance;
$Q^s$
 when the average of errors is less than a tolerance; 
 $0.5(E_P^s+E_Q^s)\lt tol$
. In the following numerical experiments, we use a tolerance of
$0.5(E_P^s+E_Q^s)\lt tol$
. In the following numerical experiments, we use a tolerance of 
 $tol=1.953e$
-
$tol=1.953e$
-
 $9$
. Now, we consider the following random perturbed initial condition:
$9$
. Now, we consider the following random perturbed initial condition:
 \begin{eqnarray} \left \{ {\begin{array}{*{20}{l}} P(x,y,0) = P_{*} + 0.02\textrm {rand}(x,y),\\[3pt] Q(x,y,0) = Q_{*} + 0.02\textrm {rand}(x,y), \end{array}} \right . \end{eqnarray}
\begin{eqnarray} \left \{ {\begin{array}{*{20}{l}} P(x,y,0) = P_{*} + 0.02\textrm {rand}(x,y),\\[3pt] Q(x,y,0) = Q_{*} + 0.02\textrm {rand}(x,y), \end{array}} \right . \end{eqnarray}
where 
 $\textrm {rand}(x,y)$
 is a random variable between
$\textrm {rand}(x,y)$
 is a random variable between 
 $-1$
 and 1. We use a uniform mesh with
$-1$
 and 1. We use a uniform mesh with 
 $N_x=N_y=128$
,
$N_x=N_y=128$
, 
 $\Delta x = \Delta y = 25/128$
 and time step
$\Delta x = \Delta y = 25/128$
 and time step 
 $\Delta t=0.2\Delta x^2$
 on the computational domain
$\Delta t=0.2\Delta x^2$
 on the computational domain 
 $\Omega = (0,25) \times (0,25)$
.
$\Omega = (0,25) \times (0,25)$
.
 In Figure 4, we choose the density function 
 $\phi (P)=P$
 with the parameters in (66). As a consequence, we have the critical value of the steady-state bifurcation as
$\phi (P)=P$
 with the parameters in (66). As a consequence, we have the critical value of the steady-state bifurcation as 
 $\xi _{k_0}^S=-2.9140$
. Next, we set the prey-taxis sensitivity constant
$\xi _{k_0}^S=-2.9140$
. Next, we set the prey-taxis sensitivity constant 
 $\xi =-3.5$
 around the critical value
$\xi =-3.5$
 around the critical value 
 $\xi _{k_0}^S$
. It is found that the spotted pattern occupies the bounded domain
$\xi _{k_0}^S$
. It is found that the spotted pattern occupies the bounded domain 
 $\Omega = (0,25)\times (0,25)$
 as time progresses.
$\Omega = (0,25)\times (0,25)$
 as time progresses.
 Next, we suppose that the density function with the saturated form, 
 $\phi (P)=\frac {P}{1+P}$
 in the IGP-type predator–prey model (1). To observe the nonconstant steady state of the predator–prey model (1) under this density function, we set the parameters as in (66). In this case, the critical value of the onset of steady state bifurcation is
$\phi (P)=\frac {P}{1+P}$
 in the IGP-type predator–prey model (1). To observe the nonconstant steady state of the predator–prey model (1) under this density function, we set the parameters as in (66). In this case, the critical value of the onset of steady state bifurcation is 
 $\xi _{k_0}^S=-3.5722$
. Now, we set the prey-taxis sensitivity coefficient as
$\xi _{k_0}^S=-3.5722$
. Now, we set the prey-taxis sensitivity coefficient as 
 $\xi =-3.75$
. Using these parameters, a combination of stripe and spot patterns (mixed patterns) can be found in the bounded domain
$\xi =-3.75$
. Using these parameters, a combination of stripe and spot patterns (mixed patterns) can be found in the bounded domain 
 $\Omega = (0,25)\times (0,25)$
, as shown in Figure 5.
$\Omega = (0,25)\times (0,25)$
, as shown in Figure 5.
 We would like to mention that a similar pattern formation can be shown in Figure 6, where we choose the density function 
 $\phi (P)=Pe^{-P}$
 when choosing the parameter (66) and
$\phi (P)=Pe^{-P}$
 when choosing the parameter (66) and 
 $\xi =-3.85$
.
$\xi =-3.85$
.
4.3 Nonconstant steady states on spherical and torus surfaces
 In this subsection, we will perform the nonconstant steady states of the IGP-type predator–prey model (1) on both spherical and torus surfaces. To this end, let us first illustrate the discrete computational domains for the spherical and torus surfaces. On a closed smooth surface 
 $\mathcal {S}$
, to numerically investigate pattern formations of the governing system, a triangular surface mesh
$\mathcal {S}$
, to numerically investigate pattern formations of the governing system, a triangular surface mesh 
 $\mathcal {S}_d$
 is used, see Figure 7 (a). We discretize the Laplace–Beltrami operator using an approach in [Reference Desbrun, Meyer, Schroder and Barr10, Reference Hwang, Ham, Lee, Lee, Kang and Kim17]. We define a surface point set
$\mathcal {S}_d$
 is used, see Figure 7 (a). We discretize the Laplace–Beltrami operator using an approach in [Reference Desbrun, Meyer, Schroder and Barr10, Reference Hwang, Ham, Lee, Lee, Kang and Kim17]. We define a surface point set 
 $ \left \{\textbf {x}_{i}\right \}_{i=1}^{m} = \left \{\textbf {x}_1, \textbf {x}_2, \textbf {x}_3, \ldots, \textbf {x}_{m} \right \}$
 on a triangular surface mesh
$ \left \{\textbf {x}_{i}\right \}_{i=1}^{m} = \left \{\textbf {x}_1, \textbf {x}_2, \textbf {x}_3, \ldots, \textbf {x}_{m} \right \}$
 on a triangular surface mesh 
 $\mathcal {S}_{d}$
. Then, each vertex point
$\mathcal {S}_{d}$
. Then, each vertex point 
 $\textbf {x}_{i}$
 has one-ring triangular surface points with an index set
$\textbf {x}_{i}$
 has one-ring triangular surface points with an index set 
 $I(i)=\{i_{1}, i_{2}, \cdots, i_p \}$
 with
$I(i)=\{i_{1}, i_{2}, \cdots, i_p \}$
 with 
 $i_{1}=i_p$
, see Figure 7(b).
$i_{1}=i_p$
, see Figure 7(b).

Figure 7. Schematic visualizations: (a) triangulated mesh of discretized spherical surface 
 $\mathcal {S}_d$
, (b) surrounding one-ring surface points set for
$\mathcal {S}_d$
, (b) surrounding one-ring surface points set for 
 $\textbf {x}_i$
, (c) triangles
$\textbf {x}_i$
, (c) triangles 
 $T_{j}$
 and
$T_{j}$
 and 
 $T_{j+}$
 featuring the angles
$T_{j+}$
 featuring the angles 
 $\alpha _{ij}$
 and
$\alpha _{ij}$
 and 
 $\beta _{ij_{+}}$
 and (d) vertex
$\beta _{ij_{+}}$
 and (d) vertex 
 ${\textbf x}_{i}$
 and its corresponding area
${\textbf x}_{i}$
 and its corresponding area 
 $ {\mathcal A}({\textbf x}_{i})$
.
$ {\mathcal A}({\textbf x}_{i})$
.
 The discrete numerical approximation is denoted as 
 $P_i^n = P(\textbf {x}_i,n\Delta t)$
, where
$P_i^n = P(\textbf {x}_i,n\Delta t)$
, where 
 $\Delta t$
 is the time step size. We discretize the IGP-type predator–prey model (1) as follows:
$\Delta t$
 is the time step size. We discretize the IGP-type predator–prey model (1) as follows:
 \begin{eqnarray*} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {P_i^{n+1}-P_i^n}{\Delta t} = d_1 \Delta _{\mathcal {S}} P_i^n - \nabla _{\mathcal {S}} \cdot \big (\xi \phi (P_i^n)\nabla _{\mathcal {S}} Q_i^n\big ) + P_i^n \left (\frac {bc}{cP_i^n+eQ_i^n}+dQ_i^n-\alpha \right ),\\[3pt] \displaystyle \frac {Q_i^{n+1}-Q_i^n}{\Delta t} = d_2 \Delta _{\mathcal {S}} Q_i^n + Q_i^n \left (\frac {be}{cP_i^n+eQ_i^n}-dP_i^n-\beta \right )-hQ_i^n. \end{array}} \right . \end{eqnarray*}
\begin{eqnarray*} \left \{ {\begin{array}{*{20}{l}} \displaystyle \frac {P_i^{n+1}-P_i^n}{\Delta t} = d_1 \Delta _{\mathcal {S}} P_i^n - \nabla _{\mathcal {S}} \cdot \big (\xi \phi (P_i^n)\nabla _{\mathcal {S}} Q_i^n\big ) + P_i^n \left (\frac {bc}{cP_i^n+eQ_i^n}+dQ_i^n-\alpha \right ),\\[3pt] \displaystyle \frac {Q_i^{n+1}-Q_i^n}{\Delta t} = d_2 \Delta _{\mathcal {S}} Q_i^n + Q_i^n \left (\frac {be}{cP_i^n+eQ_i^n}-dP_i^n-\beta \right )-hQ_i^n. \end{array}} \right . \end{eqnarray*}
Here, we consider the discrete Laplace–Beltrami operator defined as
 \begin{align*} \Delta _{\mathcal S} P_i=\frac {3}{\mathcal {A}(\textbf {x}_i)}\sum _{j\in I(i)} \frac {\cot \alpha _{ij}+\cot \beta _{ij}}{2} (P_j-P_i) \textrm { and } \Delta _{\mathcal S} Q_i=\frac {3}{\mathcal {A}(\textbf {x}_i)}\sum _{j\in I(i)} \frac {\cot \alpha _{ij}+\cot \beta _{ij}}{2} (Q_j-Q_i), \end{align*}
\begin{align*} \Delta _{\mathcal S} P_i=\frac {3}{\mathcal {A}(\textbf {x}_i)}\sum _{j\in I(i)} \frac {\cot \alpha _{ij}+\cot \beta _{ij}}{2} (P_j-P_i) \textrm { and } \Delta _{\mathcal S} Q_i=\frac {3}{\mathcal {A}(\textbf {x}_i)}\sum _{j\in I(i)} \frac {\cot \alpha _{ij}+\cot \beta _{ij}}{2} (Q_j-Q_i), \end{align*}
where 
 ${\mathcal A}(\textbf {x}_{i})$
 is the cumulative area for the individual triangles
${\mathcal A}(\textbf {x}_{i})$
 is the cumulative area for the individual triangles 
 $T_{j}$
 centered around surface point
$T_{j}$
 centered around surface point 
 $\textbf {x}_{i}$
 (Figure 7(d)):
$\textbf {x}_{i}$
 (Figure 7(d)):
 \begin{eqnarray*} {\mathcal A}(\textbf {x}_{i})= \sum _{j \in I(i)} \frac {\sqrt {||\textbf {x}_{j}-\textbf {x}_{i}||^{2}||\textbf {x}_{j_{+}}-\textbf {x}_{i}||^{2}-\left (\textbf {x}_{j}-\textbf { x}_{i},\textbf {x}_{j_{+}}-\textbf {x}_{i}\right )^{2}}}{2}. \end{eqnarray*}
\begin{eqnarray*} {\mathcal A}(\textbf {x}_{i})= \sum _{j \in I(i)} \frac {\sqrt {||\textbf {x}_{j}-\textbf {x}_{i}||^{2}||\textbf {x}_{j_{+}}-\textbf {x}_{i}||^{2}-\left (\textbf {x}_{j}-\textbf { x}_{i},\textbf {x}_{j_{+}}-\textbf {x}_{i}\right )^{2}}}{2}. \end{eqnarray*}
The discrete divergence term 
 $\nabla _{\mathcal {S}} \cdot \left ( \xi \phi (P_i)\nabla _{\mathcal {S}} Q_i\right )$
 is approximated using a conservative form as follows:
$\nabla _{\mathcal {S}} \cdot \left ( \xi \phi (P_i)\nabla _{\mathcal {S}} Q_i\right )$
 is approximated using a conservative form as follows:
 \begin{eqnarray*} \nabla _{\mathcal {S}} \cdot \left ( \xi \phi (P_i)\nabla _{\mathcal {S}} Q_i\right ) = \frac {3\xi }{\mathcal {A}(\textbf {x}_i)}\sum _{j\in I(i)} \frac {\cot \alpha _{ij}+\cot \beta _{ij}}{2}\phi \bigg (\frac {P_j+P_i}{2}\bigg ) (Q_j-Q_i). \end{eqnarray*}
\begin{eqnarray*} \nabla _{\mathcal {S}} \cdot \left ( \xi \phi (P_i)\nabla _{\mathcal {S}} Q_i\right ) = \frac {3\xi }{\mathcal {A}(\textbf {x}_i)}\sum _{j\in I(i)} \frac {\cot \alpha _{ij}+\cot \beta _{ij}}{2}\phi \bigg (\frac {P_j+P_i}{2}\bigg ) (Q_j-Q_i). \end{eqnarray*}
In the following numerical experiments, for the numerical simulations on triangular surfaces, we use the following randomly perturbed initial condition:
 \begin{eqnarray} \left \{ {\begin{array}{*{20}{l}} P(\textbf {x}_i,0) = P_{*} + 0.02\textrm {rand}(\textbf {x}_i),\\[3pt] Q(\textbf {x}_i,0) = Q_{*} + 0.02\textrm {rand}(\textbf {x}_i), \end{array}} \right . \end{eqnarray}
\begin{eqnarray} \left \{ {\begin{array}{*{20}{l}} P(\textbf {x}_i,0) = P_{*} + 0.02\textrm {rand}(\textbf {x}_i),\\[3pt] Q(\textbf {x}_i,0) = Q_{*} + 0.02\textrm {rand}(\textbf {x}_i), \end{array}} \right . \end{eqnarray}
where 
 $\textrm {rand}(\textbf {x}_i)$
 is the uniformly distributed random perturbation between
$\textrm {rand}(\textbf {x}_i)$
 is the uniformly distributed random perturbation between 
 $-1$
 and
$-1$
 and 
 $1$
.
$1$
.
4.3.1 Nonconstant steady states on the spherical surface
 We consider a triangulated spherical surface mesh 
 $\mathcal {S}_d$
 with a radius value
$\mathcal {S}_d$
 with a radius value 
 $r=15$
 and the number of triangulated spherical surface points is
$r=15$
 and the number of triangulated spherical surface points is 
 $16590$
.
$16590$
.
 In Figure 8, we choose the density function 
 $\phi (P)=P$
 and parameter (66) in the IGP-type predator–prey model (1). Based on the theoretical analysis, we have the critical value of the steady state bifurcation to be
$\phi (P)=P$
 and parameter (66) in the IGP-type predator–prey model (1). Based on the theoretical analysis, we have the critical value of the steady state bifurcation to be 
 $\xi _{k_0}^S=-2.9140$
. Accordingly, we take the prey-taxis sensitivity parameter
$\xi _{k_0}^S=-2.9140$
. Accordingly, we take the prey-taxis sensitivity parameter 
 $\xi =-3.65$
. Considering these known parameters, we can observe that spot patterns can be formed on the spherical surface as time progresses.
$\xi =-3.65$
. Considering these known parameters, we can observe that spot patterns can be formed on the spherical surface as time progresses.
 Next, let us consider the density function 
 $\phi (P)=\frac {P}{1+P}$
 in the IGP predator–prey model (1) and fix the parameters in (66) and
$\phi (P)=\frac {P}{1+P}$
 in the IGP predator–prey model (1) and fix the parameters in (66) and 
 $d_2=0.5$
. Through direct calculation, we have the steady-state bifurcation threshold as
$d_2=0.5$
. Through direct calculation, we have the steady-state bifurcation threshold as 
 $\xi _{k_0}^S=-3.5722$
. Thus, we take
$\xi _{k_0}^S=-3.5722$
. Thus, we take 
 $\xi =-3.75$
 in proximity to the onset
$\xi =-3.75$
 in proximity to the onset 
 $\xi _{k_0}^S=-3.5722$
. Our numerical simulations demonstrate that the IGP-type predator–prey model (1) exhibits mixed stripe and spot patterns on the spherical surface, as shown in Figure 9.
$\xi _{k_0}^S=-3.5722$
. Our numerical simulations demonstrate that the IGP-type predator–prey model (1) exhibits mixed stripe and spot patterns on the spherical surface, as shown in Figure 9.
 Finally, one takes the Ricker form density function 
 $\phi (P)=Pe^{-P}$
 in the IGP predator–prey model (1). Moreover, the parameters are set in (66). As a consequence, we obtain the threshold for the steady- state bifurcation to be
$\phi (P)=Pe^{-P}$
 in the IGP predator–prey model (1). Moreover, the parameters are set in (66). As a consequence, we obtain the threshold for the steady- state bifurcation to be 
 $\xi _{k_0}^S=-3.6525$
. Taking the prey-taxis coefficient to
$\xi _{k_0}^S=-3.6525$
. Taking the prey-taxis coefficient to 
 $\xi =-3.85$
, our numerical simulation results suggest that the IGP predator–prey model (1) exhibits mixed patterns on the spherical surface, as shown in Figure 10.
$\xi =-3.85$
, our numerical simulation results suggest that the IGP predator–prey model (1) exhibits mixed patterns on the spherical surface, as shown in Figure 10.
4.3.2 Nonconstant steady states on the torus surface
 Now, we will explore the nonconstant steady states of the IGP-type predator–prey model (1) on the tour’s surface. To this end, let us consider a triangulated torus surface mesh 
 $\mathcal {S}_d$
, which has a major radius (the distance from the center of the tube to the center of the torus) value of
$\mathcal {S}_d$
, which has a major radius (the distance from the center of the tube to the center of the torus) value of 
 $R=15$
, a minor radius (radius of the tube) value of
$R=15$
, a minor radius (radius of the tube) value of 
 $r=20$
, and the number of triangulated spherical surface points is
$r=20$
, and the number of triangulated spherical surface points is 
 $16544$
.
$16544$
.
 In Figure 11, we take the density function 
 $\phi (P)=P$
 and the parameters fixed in (66) in the IGP predator–prey model (1). We can get the critical value of the steady-state bifurcation as
$\phi (P)=P$
 and the parameters fixed in (66) in the IGP predator–prey model (1). We can get the critical value of the steady-state bifurcation as 
 $\xi _{k_0}^S=-2.9140$
. Now, let us keep the prey-taxis sensitivity coefficient
$\xi _{k_0}^S=-2.9140$
. Now, let us keep the prey-taxis sensitivity coefficient 
 $\xi =-3.65$
, then there exist the spot patterns of the IGP predator–prey model (1) on the torus surface.
$\xi =-3.65$
, then there exist the spot patterns of the IGP predator–prey model (1) on the torus surface.
 Figure 12 suggests that the IGP predator–prey model (1) possesses the mixed patterns on the torus surface when choosing the saturated form density function 
 $\phi (P)=\frac {P}{1+P}$
 and the parameter values in (66) and
$\phi (P)=\frac {P}{1+P}$
 and the parameter values in (66) and 
 $\xi =-3.75$
.
$\xi =-3.75$
.
 Similar pattern formations on the torus surface can be found in Figure 13, where one adopts the Ricker-type density function 
 $\phi (P)=Pe^{-P}$
 and the parameter values in (66) and
$\phi (P)=Pe^{-P}$
 and the parameter values in (66) and 
 $\xi =-3.85$
.
$\xi =-3.85$
.
4.4 Influence of the harvesting coefficient 
 $h$
$h$
 Now, we keep the same density function 
 $\phi (P)$
 and parameters in Figure 3 (see also Figures 6,10,13) but change the harvesting coefficient
$\phi (P)$
 and parameters in Figure 3 (see also Figures 6,10,13) but change the harvesting coefficient 
 $h$
 to display how the harvesting coefficient
$h$
 to display how the harvesting coefficient 
 $h$
 will affect the pattern formation dynamics of the IGP-type predator–prey model (1). When there is no harvesting effect, namely,
$h$
 will affect the pattern formation dynamics of the IGP-type predator–prey model (1). When there is no harvesting effect, namely, 
 $h=0$
, system (1) exhibits the nonconstant steady states (stripe patterns), see picture (a) of Figures 14–16, respectively. Similar pictures can be found in pictures (b) and (c) of Figures 14–
16. A clear fact is that the stripe patterns (nonconstant steady states) gradually diminish as the harvesting coefficient
$h=0$
, system (1) exhibits the nonconstant steady states (stripe patterns), see picture (a) of Figures 14–16, respectively. Similar pictures can be found in pictures (b) and (c) of Figures 14–
16. A clear fact is that the stripe patterns (nonconstant steady states) gradually diminish as the harvesting coefficient 
 $h$
 progressively increases.
$h$
 progressively increases.
 As the harvesting coefficient 
 $h$
 increases, the stripe patterns gradually disappear, as shown in Figures 14(d)–(f), 15(d)–(f), and 16(d)–(f). In fact, with the continuous increase of the harvesting coefficient
$h$
 increases, the stripe patterns gradually disappear, as shown in Figures 14(d)–(f), 15(d)–(f), and 16(d)–(f). In fact, with the continuous increase of the harvesting coefficient 
 $h$
,
$h$
, 
 $\xi =-3.85$
 gradually moves further away from the steady-state bifurcation threshold (see Figures 3, 10, 13), this leads to the change of the patterns in Figure 14, Figure 15, and Figure 16. Consequently, prey harvesting plays an important role in inducing spatial patterns. Ecologically, over-harvesting for prey or predators is not advisable, it can lead to an ecological imbalance due to a significant reduction in population numbers. However, harvesting within a certain range is a feasible approach. This harvesting strategy is consistent with reality.
$\xi =-3.85$
 gradually moves further away from the steady-state bifurcation threshold (see Figures 3, 10, 13), this leads to the change of the patterns in Figure 14, Figure 15, and Figure 16. Consequently, prey harvesting plays an important role in inducing spatial patterns. Ecologically, over-harvesting for prey or predators is not advisable, it can lead to an ecological imbalance due to a significant reduction in population numbers. However, harvesting within a certain range is a feasible approach. This harvesting strategy is consistent with reality.

Figure 14. Influence of the harvesting coefficient 
 $h$
 when
$h$
 when 
 $\phi (P)=Pe^{-P}$
, where we choose
$\phi (P)=Pe^{-P}$
, where we choose 
 $e=1.0,\alpha =1.5,c=1,\beta =0.2,d=0.85,b=0.65,d_1=0.85,d_2=0.5,\xi =-3.85$
 and the initial data are
$e=1.0,\alpha =1.5,c=1,\beta =0.2,d=0.85,b=0.65,d_1=0.85,d_2=0.5,\xi =-3.85$
 and the initial data are 
 $(P_0(x),Q_0(x))=(P_{*}-0.02\mathrm {cos}(\frac {7 x}{8}),Q_{*}-0.02\mathrm {cos}(\frac {7 x}{8}))$
.
$(P_0(x),Q_0(x))=(P_{*}-0.02\mathrm {cos}(\frac {7 x}{8}),Q_{*}-0.02\mathrm {cos}(\frac {7 x}{8}))$
.

Figure 15. Influence of the harvesting coefficient 
 $h$
 on the spherical surface when
$h$
 on the spherical surface when 
 $\phi (P)=Pe^{-P}$
, where
$\phi (P)=Pe^{-P}$
, where 
 $e=1.0,\alpha =1.5,c=1,\beta =0.2,d=0.85,b=0.65,d_1=0.85,d_2=0.5,\xi =-3.85$
 and the initial data is (69).
$e=1.0,\alpha =1.5,c=1,\beta =0.2,d=0.85,b=0.65,d_1=0.85,d_2=0.5,\xi =-3.85$
 and the initial data is (69).

Figure 16. Influence of the harvesting coefficient 
 $h$
 on the torus surface when
$h$
 on the torus surface when 
 $\phi (P)=Pe^{-P}$
, where
$\phi (P)=Pe^{-P}$
, where 
 $e=1.0,\alpha =1.5,c=1,\beta =0.2,d=0.85,b=0.65,d_1=0.85,d_2=0.5,\xi =-3.85$
 and the initial data is (69).
$e=1.0,\alpha =1.5,c=1,\beta =0.2,d=0.85,b=0.65,d_1=0.85,d_2=0.5,\xi =-3.85$
 and the initial data is (69).
In summary, we have displayed the emergence of nonconstant steady states in 1D and 2D spaces, as well as on the spherical and torus surfaces. These numerical results are in good agreement with our previous theoretical analysis. Moreover, we can conclude that prey-taxis and harvesting effects will induce wealthy pattern dynamics for the IGP-type predator–prey model.
5. Discussions
 This paper reports the existence of the classical solution and spatiotemporal dynamics of an IGP-type predator–prey model incorporating both harvesting and prey-taxis. First, we discuss the local-in time and global existence of the classical solution 
 $(P(x,t),Q(x,t))$
 of the IGP-type predator–prey model (1) in
$(P(x,t),Q(x,t))$
 of the IGP-type predator–prey model (1) in 
 $N$
-dimensional space by virtue of some estimates, Amann’s theorem, and Neumann heat semigroup theory. Especially, it is found that the classical solution
$N$
-dimensional space by virtue of some estimates, Amann’s theorem, and Neumann heat semigroup theory. Especially, it is found that the classical solution 
 $(P(x,t),Q(x,t))$
 of IGP-type predator–prey model (1) exists for small prey-taxis sensitivity coefficient
$(P(x,t),Q(x,t))$
 of IGP-type predator–prey model (1) exists for small prey-taxis sensitivity coefficient 
 $\xi$
 as the dimension of space
$\xi$
 as the dimension of space 
 $N$
 is large, see Theorem1.1. Thereafter, we explore the steady-state bifurcation of the model (1). To this end, the stability analysis of the positive equilibrium
$N$
 is large, see Theorem1.1. Thereafter, we explore the steady-state bifurcation of the model (1). To this end, the stability analysis of the positive equilibrium 
 $E_{*}$
 is first discussed, see Theorem1.2. Our theoretical result demonstrates that the unique positive equilibrium
$E_{*}$
 is first discussed, see Theorem1.2. Our theoretical result demonstrates that the unique positive equilibrium 
 $E_{*}$
 is locally asymptotically stable for any
$E_{*}$
 is locally asymptotically stable for any 
 $\xi \geq 0$
 and the predator–prey model (1) suffers from the steady-state bifurcation when
$\xi \geq 0$
 and the predator–prey model (1) suffers from the steady-state bifurcation when 
 $\xi =\xi _k^S$
, where
$\xi =\xi _k^S$
, where 
 $\xi _k^S\lt 0$
 for all
$\xi _k^S\lt 0$
 for all 
 $k\in \mathbb {N}_0$
. Accordingly, the repulsive prey-taxis could destabilize the spatial homogeneity of the IGP-type predator–prey model (1), while the attractive prey-taxis effect will stabilize the spatial homogeneity. It is not difficult to find that there only is self-diffusion involved in the system (1) when
$k\in \mathbb {N}_0$
. Accordingly, the repulsive prey-taxis could destabilize the spatial homogeneity of the IGP-type predator–prey model (1), while the attractive prey-taxis effect will stabilize the spatial homogeneity. It is not difficult to find that there only is self-diffusion involved in the system (1) when 
 $\xi =0$
. Self-diffusion means that the movements of both predators and prey are random. For this case, the unique positive equilibrium
$\xi =0$
. Self-diffusion means that the movements of both predators and prey are random. For this case, the unique positive equilibrium 
 $E_{*}$
 always keeps its local asymptotic stability. This implies that predators and prey will coexist and random movement can not change the stable structure of the system (1). However, such a homogeneous stable status can be destroyed by integrating the prey-taxis into the system (1).
$E_{*}$
 always keeps its local asymptotic stability. This implies that predators and prey will coexist and random movement can not change the stable structure of the system (1). However, such a homogeneous stable status can be destroyed by integrating the prey-taxis into the system (1).
 In what follows, with the help of the Crandall–Rabinowitz local bifurcation theory, we respectively establish the existence and stability of the bifurcating solution, which resulted from the steady state bifurcation, see Theorem1.3 and Theorem1.4, respectively. Finally, numerical experiments are conducted to verify our theoretical analysis by choosing the different density functions 
 $\phi (P)$
. In light of the theoretical results, we find the stripe patterns of the IGP predator–prey model (1) in the 1D domain (see Figures 1–3) and the spot patterns and stripe-spot mixed patterns in the 2D domain (see Figures 4–6). Interestingly, these complicated pattern formations can also be observed on the spherical surface (see Figures 8–10) and torus surface (see Figures 11–13). These numerical results are in good agreement with the theoretical analysis. Of course, one plots Figures 14–16 to explore the influence of the harvesting effect of the IGP-type predator–prey model (1). It is found that the spatial patterns will gradually disappear with the continuous increase of the harvesting coefficient
$\phi (P)$
. In light of the theoretical results, we find the stripe patterns of the IGP predator–prey model (1) in the 1D domain (see Figures 1–3) and the spot patterns and stripe-spot mixed patterns in the 2D domain (see Figures 4–6). Interestingly, these complicated pattern formations can also be observed on the spherical surface (see Figures 8–10) and torus surface (see Figures 11–13). These numerical results are in good agreement with the theoretical analysis. Of course, one plots Figures 14–16 to explore the influence of the harvesting effect of the IGP-type predator–prey model (1). It is found that the spatial patterns will gradually disappear with the continuous increase of the harvesting coefficient 
 $h$
. This phenomenon may enlighten us that over-harvesting for prey or predators is not advisable, which will lead to ecological imbalance due to the drastic reduction in population numbers. Overall, we can conclude that this IGP-type predator–prey model with the prey-taxis and harvesting effects will perform the wealthy and interesting dynamic profiles. These results may be useful for exploring and understanding the complex dynamical evolution among different populations in a harvesting and prey-taxis environment.
$h$
. This phenomenon may enlighten us that over-harvesting for prey or predators is not advisable, which will lead to ecological imbalance due to the drastic reduction in population numbers. Overall, we can conclude that this IGP-type predator–prey model with the prey-taxis and harvesting effects will perform the wealthy and interesting dynamic profiles. These results may be useful for exploring and understanding the complex dynamical evolution among different populations in a harvesting and prey-taxis environment.
Acknowledgments
The authors are grateful to the anonymous referees for their helpful comments and valuable suggestions which have improved the presentation of the manuscript.
Data availability
There is no associated data in this manuscript.
Author contributions
Mengxin Chen: Formal analysis, Writing-original draft, Review & editing, Project administration. Canrong Tian: Writing-original draft, Methodology, Review & editing, Project administration. Seokjun Ham: Software, Codes design, Methodology, Review & editing. Hyundong Kim: Methodology, Software, Codes design, Review & editing. Junseok Kim: Supervision, Methodology, Software, Numerical computation, Review & editing.
Funding support
M. Chen was supported by the China Postdoctoral Science Foundation (No. 2021M701118) and Key Scientific Research Project of Henan Higher Eduction Institutions (No. 25A110008).
Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix A
 \begin{align*} \mathcal {R}_0=&\frac {1}{2}f_{PP}P_{*}^2+f_{PQ}P_{*}Q_{*}+\frac {1}{2}f_{QQ}Q_{*}^2 +\frac {1}{3!}f_{QQQ}Q_{*}^3+\frac {1}{2}f_{PPQ}P_{*}^2Q_{*}+\frac {1}{2}f_{PQQ}P_{*} Q_{*}^2 +\frac {1}{3!}f_{PPP}P_{*}^3,\\[3pt] \mathcal {R}_1(x)=&\left [f_P+f_Q\alpha _k+f_{PP}P_{*}+f_{PQ}(P_{*}\alpha _k+Q^{*})+f_{QQ}Q_{*}\alpha _k +\frac {1}{2}f_{QQQ}Q_{*}^2\alpha _k\right .\\[3pt] &\left .+\frac {1}{2}f_{PPQ}P_{*}(2Q_{*}+P_{*}\alpha _k) +\frac {1}{2}f_{PQQ}Q_{*}(2P_{*}\alpha _k+Q_{*}) +\frac {1}{2}f_{PPP}P_{*}^2\right ]\mathrm {cos}\frac {kx}{L},\\[3pt] \mathcal {R}_2(x)=&f_PP_1(x)+f_QQ_1(x)+\frac {1}{2}f_{PP}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ) +f_{PQ}\left (P_{*}Q_1(x)+Q_{*}P_1(x)+\alpha _k\mathrm {cos}^2\frac {kx}{L}\right )\\[3pt]& \displaystyle +\frac {1}{2}f_{QQ}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right ) +\frac {1}{2}f_{QQQ}Q_{*}\left (\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}Q_1(x)\right ) \\[3pt]& \displaystyle +\frac {1}{2}f_{PPQ}\left (2Q_{*}P_{*}P_1(x)+2\alpha _kP_{*}\mathrm {cos}^2\frac {kx}{L}+\mathrm {cos}^2\frac {kx}{L}+P_{*}^2Q_1(x)\right ) \\[3pt]&+\frac {1}{2}f_{PQQ}\left (2Q_{*}P_{*}Q_1(x)+2\alpha _kQ_{*}\mathrm {cos}^2\frac {kx}{L}+P_{*}\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}^2P_1(x)\right ) \\[3pt]&+\frac {1}{2}f_{PPP}P_{*}\left (P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ),\\[3pt] \mathcal {R}_3(x)=&f_{PP}\left (P_{*}P_2(x)+P_1(x)\mathrm {cos}\frac {kx}{L}\right ) +f_{PQ}\left (P_{*}Q_2(x)+Q_1(x)\mathrm {cos}\frac {kx}{L}+\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}P_2(x)\right ) \\[3pt]&+f_{QQ}\left (\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}Q_2(x)\right ) +\frac {1}{3!}f_{QQQ}\left (3Q_{*}^2Q_2(x)+\alpha _k^3\mathrm {cos}^3\frac {kx}{L}+5Q_{*}\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}\right ) \\[3pt]&+\frac {1}{2}f_{PPQ}\left [2P_{*}Q_{*}P_2(x)+2Q_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\alpha _k\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )+2P_{*}Q_1(x)\mathrm {cos}\frac {kx}{L}\right .\\[3pt] &\left .+P_{*}^2Q_2(x)\right ] +\frac {1}{2}f_{PQQ}\left [2P_{*}Q_{*}Q_2(x)+2\alpha _kP_{*}Q_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt] &\left .+2Q_{*}\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}^2P_2(x)\right ] +\frac {1}{3!}f_{PPP}\left [3P_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt]&\left .+3P_{*}^2P_2(x)\right ]+f_PP_2(x)+f_QQ_2(x). \end{align*}
\begin{align*} \mathcal {R}_0=&\frac {1}{2}f_{PP}P_{*}^2+f_{PQ}P_{*}Q_{*}+\frac {1}{2}f_{QQ}Q_{*}^2 +\frac {1}{3!}f_{QQQ}Q_{*}^3+\frac {1}{2}f_{PPQ}P_{*}^2Q_{*}+\frac {1}{2}f_{PQQ}P_{*} Q_{*}^2 +\frac {1}{3!}f_{PPP}P_{*}^3,\\[3pt] \mathcal {R}_1(x)=&\left [f_P+f_Q\alpha _k+f_{PP}P_{*}+f_{PQ}(P_{*}\alpha _k+Q^{*})+f_{QQ}Q_{*}\alpha _k +\frac {1}{2}f_{QQQ}Q_{*}^2\alpha _k\right .\\[3pt] &\left .+\frac {1}{2}f_{PPQ}P_{*}(2Q_{*}+P_{*}\alpha _k) +\frac {1}{2}f_{PQQ}Q_{*}(2P_{*}\alpha _k+Q_{*}) +\frac {1}{2}f_{PPP}P_{*}^2\right ]\mathrm {cos}\frac {kx}{L},\\[3pt] \mathcal {R}_2(x)=&f_PP_1(x)+f_QQ_1(x)+\frac {1}{2}f_{PP}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ) +f_{PQ}\left (P_{*}Q_1(x)+Q_{*}P_1(x)+\alpha _k\mathrm {cos}^2\frac {kx}{L}\right )\\[3pt]& \displaystyle +\frac {1}{2}f_{QQ}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right ) +\frac {1}{2}f_{QQQ}Q_{*}\left (\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}Q_1(x)\right ) \\[3pt]& \displaystyle +\frac {1}{2}f_{PPQ}\left (2Q_{*}P_{*}P_1(x)+2\alpha _kP_{*}\mathrm {cos}^2\frac {kx}{L}+\mathrm {cos}^2\frac {kx}{L}+P_{*}^2Q_1(x)\right ) \\[3pt]&+\frac {1}{2}f_{PQQ}\left (2Q_{*}P_{*}Q_1(x)+2\alpha _kQ_{*}\mathrm {cos}^2\frac {kx}{L}+P_{*}\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}^2P_1(x)\right ) \\[3pt]&+\frac {1}{2}f_{PPP}P_{*}\left (P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ),\\[3pt] \mathcal {R}_3(x)=&f_{PP}\left (P_{*}P_2(x)+P_1(x)\mathrm {cos}\frac {kx}{L}\right ) +f_{PQ}\left (P_{*}Q_2(x)+Q_1(x)\mathrm {cos}\frac {kx}{L}+\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}P_2(x)\right ) \\[3pt]&+f_{QQ}\left (\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}Q_2(x)\right ) +\frac {1}{3!}f_{QQQ}\left (3Q_{*}^2Q_2(x)+\alpha _k^3\mathrm {cos}^3\frac {kx}{L}+5Q_{*}\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}\right ) \\[3pt]&+\frac {1}{2}f_{PPQ}\left [2P_{*}Q_{*}P_2(x)+2Q_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\alpha _k\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )+2P_{*}Q_1(x)\mathrm {cos}\frac {kx}{L}\right .\\[3pt] &\left .+P_{*}^2Q_2(x)\right ] +\frac {1}{2}f_{PQQ}\left [2P_{*}Q_{*}Q_2(x)+2\alpha _kP_{*}Q_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt] &\left .+2Q_{*}\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}^2P_2(x)\right ] +\frac {1}{3!}f_{PPP}\left [3P_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt]&\left .+3P_{*}^2P_2(x)\right ]+f_PP_2(x)+f_QQ_2(x). \end{align*}
Appendix B
 \begin{align*} \mathcal {V}_0=&\frac {1}{2}g_{PP}P_{*}^2+g_{PQ}P_{*}Q_{*}+\frac {1}{2}g_{QQ}Q_{*}^2 +\frac {1}{3!}g_{QQQ}Q_{*}^3+\frac {1}{2}g_{PPQ}P_{*}^2Q_{*}+\frac {1}{2}g_{PQQ}P_{*} Q_{*}^2 +\frac {1}{3!}g_{PPP}P_{*}^3,\\[3pt]\mathcal {V}_1(x)=&\left [g_P+g_Q\alpha _k+g_{PP}P_{*}+g_{PQ}(P_{*}\alpha _k+Q^{*})+g_{QQ}Q_{*}\alpha _k +\frac {1}{2}g_{QQQ}Q_{*}^2\alpha _k\right .\\[3pt]&\left .+\frac {1}{2}g_{PPQ}P_{*}(2Q_{*}+P_{*}\alpha _k) +\frac {1}{2}g_{PQQ}Q_{*}(2P_{*}\alpha _k+Q_{*}) +\frac {1}{2}g_{PPP}P_{*}^2\right ]\mathrm {cos}\frac {kx}{L},\end{align*}
\begin{align*} \mathcal {V}_0=&\frac {1}{2}g_{PP}P_{*}^2+g_{PQ}P_{*}Q_{*}+\frac {1}{2}g_{QQ}Q_{*}^2 +\frac {1}{3!}g_{QQQ}Q_{*}^3+\frac {1}{2}g_{PPQ}P_{*}^2Q_{*}+\frac {1}{2}g_{PQQ}P_{*} Q_{*}^2 +\frac {1}{3!}g_{PPP}P_{*}^3,\\[3pt]\mathcal {V}_1(x)=&\left [g_P+g_Q\alpha _k+g_{PP}P_{*}+g_{PQ}(P_{*}\alpha _k+Q^{*})+g_{QQ}Q_{*}\alpha _k +\frac {1}{2}g_{QQQ}Q_{*}^2\alpha _k\right .\\[3pt]&\left .+\frac {1}{2}g_{PPQ}P_{*}(2Q_{*}+P_{*}\alpha _k) +\frac {1}{2}g_{PQQ}Q_{*}(2P_{*}\alpha _k+Q_{*}) +\frac {1}{2}g_{PPP}P_{*}^2\right ]\mathrm {cos}\frac {kx}{L},\end{align*}
 \begin{align*} \mathcal {V}_2(x)=&g_PP_1(x)+g_QQ_1(x)+\frac {1}{2}g_{PP}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ) +g_{PQ}\left (P_{*}Q_1(x)+Q_{*}P_1(x)+\alpha _k\mathrm {cos}^2\frac {kx}{L}\right )\\[3pt]& +\frac {1}{2}g_{QQ}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right ) +\frac {1}{2}g_{QQQ}Q_{*}\left (\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}Q_1(x)\right )\\[3pt]&+\frac {1}{2}g_{PPQ}\left (2Q_{*}P_{*}P_1(x)+2\alpha _kP_{*}\mathrm {cos}^2\frac {kx}{L}+\mathrm {cos}^2\frac {kx}{L}+P_{*}^2Q_1(x)\right ) \\[3pt]&+\frac {1}{2}g_{PQQ}\left (2Q_{*}P_{*}Q_1(x)+2\alpha _kQ_{*}\mathrm {cos}^2\frac {kx}{L}+P_{*}\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}^2P_1(x)\right ) \\[3pt]&+\frac {1}{2}g_{PPP}P_{*}\left (P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ),\\[3pt]\mathcal {V}_3(x)=&g_{PP}\left (P_{*}P_2(x)+P_1(x)\mathrm {cos}\frac {kx}{L}\right ) +g_{PQ}\left (P_{*}Q_2(x)+Q_1(x)\mathrm {cos}\frac {kx}{L}+\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}P_2(x)\right ) \\[3pt]&+g_{QQ}\left (\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}Q_2(x)\right ) +\frac {1}{3!}g_{QQQ}\left (3Q_{*}^2Q_2(x)+\alpha _k^3\mathrm {cos}^3\frac {kx}{L}+5Q_{*}\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}\right ) \\[3pt]&+\frac {1}{2}g_{PPQ}\left [2P_{*}Q_{*}P_2(x)+2Q_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\alpha _k\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )+2P_{*}Q_1(x)\mathrm {cos}\frac {kx}{L}\right .\\[3pt]&\left .+P_{*}^2Q_2(x)\right ] +\frac {1}{2}g_{PQQ}\left [2P_{*}Q_{*}Q_2(x)+2\alpha _kP_{*}Q_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt] &\left .+2Q_{*}\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}^2P_2(x)\right ] +\frac {1}{3!}g_{PPP}\left [3P_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt]&\left .+3P_{*}^2P_2(x)\right ]+g_PP_2(x)+g_QQ_2(x), \end{align*}
\begin{align*} \mathcal {V}_2(x)=&g_PP_1(x)+g_QQ_1(x)+\frac {1}{2}g_{PP}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ) +g_{PQ}\left (P_{*}Q_1(x)+Q_{*}P_1(x)+\alpha _k\mathrm {cos}^2\frac {kx}{L}\right )\\[3pt]& +\frac {1}{2}g_{QQ}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right ) +\frac {1}{2}g_{QQQ}Q_{*}\left (\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}Q_1(x)\right )\\[3pt]&+\frac {1}{2}g_{PPQ}\left (2Q_{*}P_{*}P_1(x)+2\alpha _kP_{*}\mathrm {cos}^2\frac {kx}{L}+\mathrm {cos}^2\frac {kx}{L}+P_{*}^2Q_1(x)\right ) \\[3pt]&+\frac {1}{2}g_{PQQ}\left (2Q_{*}P_{*}Q_1(x)+2\alpha _kQ_{*}\mathrm {cos}^2\frac {kx}{L}+P_{*}\alpha _k^2\mathrm {cos}^2\frac {kx}{L}+Q_{*}^2P_1(x)\right ) \\[3pt]&+\frac {1}{2}g_{PPP}P_{*}\left (P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right ),\\[3pt]\mathcal {V}_3(x)=&g_{PP}\left (P_{*}P_2(x)+P_1(x)\mathrm {cos}\frac {kx}{L}\right ) +g_{PQ}\left (P_{*}Q_2(x)+Q_1(x)\mathrm {cos}\frac {kx}{L}+\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}P_2(x)\right ) \\[3pt]&+g_{QQ}\left (\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}Q_2(x)\right ) +\frac {1}{3!}g_{QQQ}\left (3Q_{*}^2Q_2(x)+\alpha _k^3\mathrm {cos}^3\frac {kx}{L}+5Q_{*}\alpha _kQ_1(x)\mathrm {cos}\frac {kx}{L}\right ) \\[3pt]&+\frac {1}{2}g_{PPQ}\left [2P_{*}Q_{*}P_2(x)+2Q_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\alpha _k\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )+2P_{*}Q_1(x)\mathrm {cos}\frac {kx}{L}\right .\\[3pt]&\left .+P_{*}^2Q_2(x)\right ] +\frac {1}{2}g_{PQQ}\left [2P_{*}Q_{*}Q_2(x)+2\alpha _kP_{*}Q_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2Q_{*}Q_1(x)+\alpha _k^2\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt] &\left .+2Q_{*}\alpha _kP_1(x)\mathrm {cos}\frac {kx}{L}+Q_{*}^2P_2(x)\right ] +\frac {1}{3!}g_{PPP}\left [3P_{*}P_1(x)\mathrm {cos}\frac {kx}{L} +\mathrm {cos}\frac {kx}{L}\left (2P_{*}P_1(x)+\mathrm {cos}^2\frac {kx}{L}\right )\right .\\[3pt]&\left .+3P_{*}^2P_2(x)\right ]+g_PP_2(x)+g_QQ_2(x), \end{align*}
where
 \begin{align*} &f_{PQ}=d+\frac {ebc(cP_{*}-eQ_{*})}{(cP_{*}+eQ_{*})^3},\ \ f_{QQ}=\frac {2e^2bcP_{*}}{(cP_{*}+eQ_{*})^3}, \ f_{PP}=-\frac {2ebc^2Q_{*}}{(cP_{*}+eQ_{*})^3}, \ f_{PPP}=\frac {6ebc^3Q_{*}}{(cP_{*}+eQ_{*})^4},\\[3pt] &f_{PPQ}=\frac {2ebc^2(2eQ_{*}-cP_{*})}{(cP_{*}+eQ_{*})^4}, \ f_{PQQ}=\frac {2e^2bc(eQ_{*}-2cP_{*})}{(cP_{*}+eQ_{*})^4}, \ f_{QQQ}=-\frac {6e^3 bcP_{*}}{(cP_{*}+eQ_{*})^4}, \\[3pt]&g_{PP}=\frac {2ebc^2Q_{*}}{(cP_{*}+eQ_{*})^3}, \ g_{PQ}=\frac {ebc(eQ_{*}-cP_{*})}{(cP_{*}+eQ_{*})^3}-d, \ g_{QQ}=-\frac {2e^2bcP_{*}}{(cP_{*}+eQ_{*})^3}, \ g_{PPP}=-\frac {6ebc^3Q_{*}}{(cP_{*}+eQ_{*})^4},\\[3pt] &g_{PPQ}=\frac {2ebc^2(cP_{*}-2eQ_{*})}{(cP_{*}+eQ_{*})^4},\ g_{PQQ}=\frac {2e^2bc(2cP_{*}-eQ_{*})}{(cP_{*}+eQ_{*})^4}, \ \ g_{QQQ}=\frac {6e^3bcP_{*}}{(cP_{*}+eQ_{*})^4}. \end{align*}
\begin{align*} &f_{PQ}=d+\frac {ebc(cP_{*}-eQ_{*})}{(cP_{*}+eQ_{*})^3},\ \ f_{QQ}=\frac {2e^2bcP_{*}}{(cP_{*}+eQ_{*})^3}, \ f_{PP}=-\frac {2ebc^2Q_{*}}{(cP_{*}+eQ_{*})^3}, \ f_{PPP}=\frac {6ebc^3Q_{*}}{(cP_{*}+eQ_{*})^4},\\[3pt] &f_{PPQ}=\frac {2ebc^2(2eQ_{*}-cP_{*})}{(cP_{*}+eQ_{*})^4}, \ f_{PQQ}=\frac {2e^2bc(eQ_{*}-2cP_{*})}{(cP_{*}+eQ_{*})^4}, \ f_{QQQ}=-\frac {6e^3 bcP_{*}}{(cP_{*}+eQ_{*})^4}, \\[3pt]&g_{PP}=\frac {2ebc^2Q_{*}}{(cP_{*}+eQ_{*})^3}, \ g_{PQ}=\frac {ebc(eQ_{*}-cP_{*})}{(cP_{*}+eQ_{*})^3}-d, \ g_{QQ}=-\frac {2e^2bcP_{*}}{(cP_{*}+eQ_{*})^3}, \ g_{PPP}=-\frac {6ebc^3Q_{*}}{(cP_{*}+eQ_{*})^4},\\[3pt] &g_{PPQ}=\frac {2ebc^2(cP_{*}-2eQ_{*})}{(cP_{*}+eQ_{*})^4},\ g_{PQQ}=\frac {2e^2bc(2cP_{*}-eQ_{*})}{(cP_{*}+eQ_{*})^4}, \ \ g_{QQQ}=\frac {6e^3bcP_{*}}{(cP_{*}+eQ_{*})^4}. \end{align*}
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 



































































