No CrossRef data available.
Published online by Cambridge University Press: 01 December 2007
The stationary flow of a jet of a Newtonian fluid that is drawn by gravity onto a moving surface is analyzed. It is assumed that the jet has a convex shape and hits the moving surface tangentially. The flow is modelled by a third-order ODE on a domain of unknown length and with an additional integral condition. By solving part of the equation explicitly, the problem is reformulated as a first-order ODE with an integral constraint. The corresponding existence region in the three-dimensional parameter space is characterized in terms of an easily calculable quantity. In a qualitative sense, the results from the model are found to correspond with experimental observations.