Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:31:28.498Z Has data issue: false hasContentIssue false

Mathematics of thermoacoustic tomography

Published online by Cambridge University Press:  01 April 2008

PETER KUCHMENT
Affiliation:
Mathematics Department, Texas A&M University, College Station, TX 77843-3368, USA email: kuchment@math.tamu.edu
LEONID KUNYANSKY
Affiliation:
Mathematics Department, University of Arizona, Tucson, AZ 77843-3368, USA email: leonk@math.arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The article presents a survey of mathematical problems, techniques and challenges arising in thermoacoustic tomography and its sibling photoacoustic tomography.

Type
A Survey in Mathematics for Industry
Copyright
Copyright © Cambridge University Press 2008

References

[1]Agranovsky, M. (1997) Radon transform on polynomial level sets and related problems. Israel Math. Conf. Proc. 11, 121.Google Scholar
[2]Agranovsky, M. (2000) On a problem of injectivity for the Radon transform on a paraboloid. Analysis, geometry, number theory: The mathematics of Leon Ehrenpreis In: Contemp. Math. 251, AMS, Providence, RI, pp. 1–14.CrossRefGoogle Scholar
[3]Agranovsky, M., Berenstein, C. & Kuchment, P. (1996) Approximation by spherical waves in L p-spaces. J. Geom. Anal. 6 (3), 365383.CrossRefGoogle Scholar
[4]Agranovsky, M. & Kuchment, P. (2007) Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inv. Prob. 23, 20892102.CrossRefGoogle Scholar
[5]Agranovsky, M., Kuchment, P. & Kunyansky, L. (2007) On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography. To appear in CRC.Google Scholar
[6]Agranovsky, M., Kuchment, P. & Quinto, E. T. (2007) Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248, 344386.CrossRefGoogle Scholar
[7]Agranovsky, M. & Quinto, E. T. (1996) Injectivity sets for the Radon transform over circles and complete systems of radial functions. J Funct. Anal. 139, 383414.CrossRefGoogle Scholar
[8]Agranovsky, M. & Quinto, E. T. (2001) Geometry of stationary sets for the wave equation in IRn: The case of finitely suported initial data. Duke Math. J. 107 (1), 5784.CrossRefGoogle Scholar
[9]Agranovsky, M. & Quinto, E. T. (2003) Stationary sets for the wave equation in crystallographic domains. Trans. AMS 355 (6), 24392451.CrossRefGoogle Scholar
[10]Agranovsky, M. & Quinto, E. T. (2006) Remarks on stationary sets for the wave equation. Integral Geom. Tomography, Contemp. Math. 405, 111.CrossRefGoogle Scholar
[11]Agranovsky, M., Volchkov, V. V. & Zalcman, L. (1999) Conical uniqueness sets for the spherical Radon transform. Bull. London Math. Soc. 31 (4), 363372.CrossRefGoogle Scholar
[12]Ambartsoumian, G. & Kuchment, P. (2005) On the injectivity of the circular Radon transform. Inv. Prob. 21, 473485.CrossRefGoogle Scholar
[13]Ambartsoumian, G. & Kuchment, P. (2006) A range description for the planar circular Radon transform. SIAM J. Math. Anal. 38 (2), 681692.CrossRefGoogle Scholar
[14]Ambartsoumian, G. & Patch, S. (2007) Thermoacoustic tomography: Numerical results. In: Alexander A. Oraevsky, Lihong V. Wang (editors) Proceedings of SPIE 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, p. 64371B, SPIE-International Society for Optical Engine, Bellingham, Washington.CrossRefGoogle Scholar
[15]Anastasio, M. A.Zhang, J.Modgil, D. & Rivière, P. J. (2007) Application of inverse source concepts to photoacoustic tomography, Inv. Prob. 23, S21S35.CrossRefGoogle Scholar
[16]Anastasio, M., Zhang, J., Pan, X., Zou, Y., Ku, G. & Wang, L. V. (2005) Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 199210.CrossRefGoogle ScholarPubMed
[17]Anastasio, M. A.Zhang, J.Sidky, E. Y.Yu Zou, Dan Xia & Xiaochuan. (2005). Feasibility of half-data image reconstruction in 3D reflectivity tomography with a spherical aperture, IEEE Trans. Med. Imaging 24 (9), 11001112.CrossRefGoogle ScholarPubMed
[18]Andersson, L.-E. (1988) On the determination of a function from spherical averages. SIAM J. Math. Anal. 19 (1), 214232.CrossRefGoogle Scholar
[19]Andreev, V. G., Popov, D. A., Sushko, D. V., Karabutov, A. A. & Oraevsky, A. A. (2002) Image reconstruction in 3D optoacoustic tomography system with hemispherical transducer array. In: Proc. SPIE 4618, p. 1605-7422/02.CrossRefGoogle Scholar
[20]Asgeirsson, L. (1937) Über eine Mittelwerteigenschaft von Lösungen homogener linearer partieller Differentialgleichungen zweiter Ordnung mit konstanten Koeffizienten. Ann. Math. 113, 321346.CrossRefGoogle Scholar
[21]Beylkin, G. (1984) The inversion problem and applications of the generalized Radon transform. Comm. Pure Appl. Math. 37, 579599.CrossRefGoogle Scholar
[22]Burgholzer, P., Grün, H., Haltmeier, M., Nuster, R. & Paltauf, G. (2007) Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors using time reversal. In: Proceedings SPIE number 6437.75 Photonics West, BIOS 2007, San Jose, CA.CrossRefGoogle Scholar
[23]Burgholzer, P., Hofer, C., Matt, G. J.Paltauf, G.Haltmeier, M. & Scherzer, O. (2006) Thermoacoustic tomography using a fiber-based Fabry-Perot interferometer as an integrating line detector. In: Proc. SPIE 6086, pp. 434–442.CrossRefGoogle Scholar
[24]Burgholzer, P., Hofer, C., Paltauf, G., Haltmeier, M. & Scherzer, O. (2005) Thermoacoustic tomography with integrating area and line detectors. IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control 52 (9), 15771583.CrossRefGoogle ScholarPubMed
[25]Burgholzer, P., Matt, G., Haltmeier, M. & Patlauf, G. (2007) Exact and approximate imaging methods for photoacoustic tomography using an arbitrary detection surface. Phys. Rev. E 75, 046706.CrossRefGoogle ScholarPubMed
[26]Clason, C. & Klibanov, M. (2007) The quasi-reversibility method in thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30, 123.CrossRefGoogle Scholar
[27]Copland, J. A. et al. . (2004) Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography. Mol. Imaging Biol. 6 (5), 341349.CrossRefGoogle ScholarPubMed
[28]Courant, R. & Hilbert, D. (1962) Methods of Mathematical Physics, Vol. II: Partial Differential Equations, Interscience, New York.Google Scholar
[29]Cox, B. T., Arridge, S. R. & Beard, P. C. (2007). Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity. Inv. Prob. 23, S95S112.CrossRefGoogle Scholar
[30]Denisjuk, A. (1999) Integral geometry on the family of semi-spheres. Fract. Calc. Appl. Anal. 2 (1), 3146.Google Scholar
[31]Devaney, A. J. & Beylkin, G. (1984) Diffraction tomography using arbitrary transmitter and receiver surfaces. Ultrasonic Imaging 6, 181193.CrossRefGoogle ScholarPubMed
[32]Diebold, G. J.Sun, T. & Khan, M. I. (1991) Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67 (24), 33843387.CrossRefGoogle ScholarPubMed
[33]Egorov, Yu. V. & Shubin, M. A. (1992) Partial Differential Equations I. Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 30, 1259.Google Scholar
[34]Ehrenpreis, L. (2003) The Universality of the Radon Transform, Oxford University Press, Oxford.CrossRefGoogle Scholar
[35]Fawcett, J. A. (1985) Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45 (2), 336341.CrossRefGoogle Scholar
[36]Finch, D. V. (2005) On a thermoacoustic transform. In: Proc. Fully 3D Reconstruction Radiology Nuclear Medicine, Salt Lake City, 5–9 July 2005. Available online at http://www.ucair.med.utah.edu/3D05/PaperPDF/3D05proceedingspart4-pages143-202.pdfGoogle Scholar
[37]Finch, D., Haltmeier, M. & Rakesh (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68 (2), 392412.CrossRefGoogle Scholar
[38]Finch, D., Patch, S. & Rakesh (2004) Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35 (5), 12131240.CrossRefGoogle Scholar
[39]Finch, D. & Rakesh (2006) The range of the spherical mean value operator for functions supported in a ball. Inv. Prob. 22, 923938.CrossRefGoogle Scholar
[40]Finch, D. & Rakesh (2007) Recovering a function from its spherical mean values in two and three dimensions. To appear in CRC.Google Scholar
[41]Finch, D. & Rakesh (2007) The spherical mean value operator with centers on a sphere. Inv. Prob. 23 (6), S37S50.CrossRefGoogle Scholar
[42]Flatto, L., Newman, D. J. & Shapiro, H. S. (1966) The level curves of harmonic functions. Trans. Amer. Math. Soc. 123, 425436.CrossRefGoogle Scholar
[43]Gelfand, I., Gindikin, S. & Graev, M. (1980) Integral geometry in affine and projective spaces. J. Sov. Math. 18, 39167.CrossRefGoogle Scholar
[44]Gelfand, I., Gindikin, S. & Graev, M. (2003) Selected Topics in Integral Geometry. Transl. Math. Monogr. vol. 220, AMS, Providence, RI.CrossRefGoogle Scholar
[45]Gelfand, I., Graev, M. & Vilenknin, N. (1965) Generalized Functions, vol. 5: Integral Geometry and Representation Theory, Academic Press, New York.Google Scholar
[46]Georgieva-Hristova, Y.Kuchment, P. & Nguyen, L. (2007) On reconstruction and time reversal in thermoacoustic tomography, preprint.Google Scholar
[47]Gindikin, S. (1995) Integral geometry on real quadrics. In: Lie groups and Lie algebras: E. B. Dynkin's Seminar, Amer. Math. Soc. Transl. Ser. 2, 169, AMS, Providence, RI, pp. 23–31.CrossRefGoogle Scholar
[48]Greenleaf, A. & Uhlmann, G. (1990) Microlocal techniques in integral geometry. Contemp. Math. 113, 149155.Google Scholar
[49]Grün, H., Haltmeier, M., Paltauf, G. & Burgholzer, P. (2007) Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method. In: Proc. SPIE, 6631, p. 663107.CrossRefGoogle Scholar
[50]Guillemin, V. (1975) Fourier integral operators from the Radon transform point of view. Proc. Symposia Pure Math. 27, 297300.CrossRefGoogle Scholar
[51]Guillemin, V. (1985) On some results of Gelfand in integral geometry. Proc. Symposia Pure Math. 43, 149155.CrossRefGoogle Scholar
[52]Guillemin, V. & Sternberg, S. (1977) Geometric Asymptotics. AMS, Providence, RI.CrossRefGoogle Scholar
[53]Gusev, V. E. & Karabutov, A. A. (1993) Laser Optoacoustics, American Institute of Physics, New York.Google Scholar
[54]Haltmeier, M., Burgholzer, P., Hofer, C., Paltauf, G., Nuster, R. & Scherzer, O. (2005) Thermoacoustic tomography using integrating line detectors. Ultrasonics Symp. 1, 166169.Google Scholar
[55]Haltmeier, M., Burgholzer, P., Paltauf, G. & Scherzer, O. (2004) Thermoacoustic computed tomography with large planar receivers. Inv. Prob. 20, 16631673.CrossRefGoogle Scholar
[56]Haltmeier, M. & Fidler, T. Mathematical challenges arising in thermoacoustic tomography with line detectors, preprint arXiv:math.AP/0610155.Google Scholar
[57]Haltmeier, M., Paltauf, G., Burgholzer, P. & Scherzer, O. (2005) Thermoacoustic tomography with integrating line detectors. In: Proc. SPIE 5864, p. 586402-8.Google Scholar
[58]Haltmeier, M., Scherzer, O., Burgholzer, P. & Paltauf, G. (2005) Thermoacoustic computed tomography with large planar receivers. ECMI Newslett. 37, 3134. http://www.it.lut.fi/mat/EcmiNL/ecmi37/Google Scholar
[59]Haltmeier, M., Schuster, T. & Scherzer, O. (2005) Filtered backprojection for thermoacoustic computed tomography in spherical geometry. Math. Methods Appl. Sci. 28, 19191937.CrossRefGoogle Scholar
[60]Helgason, S. (1980) The Radon Transform, Birkhäuser, Basel.CrossRefGoogle Scholar
[61]Helgason, S. (2000) Groups and Geometric Analysis, AMS, Providence, RI.CrossRefGoogle Scholar
[62]Herman, G. (editor) (1979) Topics in Applied Physics, Vol. 32: Image Reconstruction from Projections Springer-Verlag, Berlin.CrossRefGoogle Scholar
[63]Hörmander, L. (1983) The Analysis of Linear Partial Differential Operators, Vol. 1, Springer-Verlag, New York.Google Scholar
[64]Inverse Problems (2007) (a special issue devoted to thermoacoustic tomography) 23 (6).Google Scholar
[65]Jin, X. & Wang, L. V. (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phy. Med. Biol. 51, 64376448.CrossRefGoogle ScholarPubMed
[66]John, F. (1971) Plane Waves and Spherical Means Applied to Partial Differential Equations, Dover, New York.Google Scholar
[67]Kak, A. C. & Slaney, M. (2001) Principles of Computerized Tomographic Imaging, SIAM, Philadelphia, PA.CrossRefGoogle Scholar
[68]Köstli, K. P.Frenz, M.Bebie, H. & Weber, H. P. (2001) Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol. 46, 18631872CrossRefGoogle ScholarPubMed
[69]Kruger, R. A.Kiser, W. L.Reinecke, D. R. & Kruger, G. A. (2003) Thermoacoustic computed tomography using a conventional linear transducer array. Med. Phys. 30 (5), 856860.CrossRefGoogle ScholarPubMed
[70]Kruger, R. A.Liu, P.Fang, Y. R. & Appledorn, C. R. (1995) Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys. 22, 16051609.CrossRefGoogle ScholarPubMed
[71]Kuchment, P. (1993), unpublished.Google Scholar
[72]Kuchment, P. (2006) Generalized transforms of radon type and their applications. In: American Mathematical Society Short Course, 3–4 January 2005, Atlanta, GA, Proc. Symp. Appl. Math. vol. 63, AMS, Providence RI, pp. 67–91.CrossRefGoogle Scholar
[73]Kuchment, P., Lancaster, K. & Mogilevskaya, L. (1995) On local tomography. Inv. Prob. 11, 571589.CrossRefGoogle Scholar
[74]Kuchment, P. & Lvin, S. (1990) Paley-Wiener theorem for the exponential Radon transform. Acta Applicandae Mathematicae (18), 251–260.CrossRefGoogle Scholar
[75]Kuchment, P. & Lvin, S. (1991) The range of the exponential radon transform. Sov. Math. Dokl. 42 (1), 183184.Google Scholar
[76]Kuchment, P. & Quinto, E. T. (2003). Some problems of integral geometry arising in tomography. In: The University of the Radon Transform, Oxform University Press, Oxford, Capter XI.Google Scholar
[77]Kunyansky, L. (2007) Explicit inversion formulae for the spherical mean Radon transform. Inv. Prob. 23, 737783.CrossRefGoogle Scholar
[78]Kunyansky, L. (2007) A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inv. Prob. 23, S11S20.CrossRefGoogle Scholar
[79]Lin, V. & Pinkus, A. (1993) Fundamentality of ridge functions. J. Approx. Theory 75, 295311.CrossRefGoogle Scholar
[80]Lin, V. & Pinkus, A (1994) Approximation of multivariate functions. In H. P. Dikshit & C. A. Micchelli (editors), Advances in Computational Mathematics, World Scientific, pp. 1–9.Google Scholar
[81]Louis, A. K. & Quinto, E. T. (2000) Local tomographic methods in Sonar. In Surveys on Solution Methods for Inverse Problems, Springer, Vienna, David Colton, Heinz W. Engl, Alfred K. Louis, and Joyce R. McLaughlin, pp. 147–154.CrossRefGoogle Scholar
[82]Lvin, S. (1994) Data correction and restoration in emission tomography. In E. T. Quinto, M. Cheney & P. Kuchment (editors), Tomography, Impedance Imaging, and Integral Geometry, Lectures in Appl. Math., Vol. 30, AMS, Providence, RI, pp. 149–155.Google Scholar
[83]Maslov, K., Zhang, H. F. & Wang, L. V. (2007) Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo. Inv. Prob. 23, S113S122.CrossRefGoogle Scholar
[84]Mathematics and Physics of Emerging Biomedical Imaging, The National Academies Press, 1996. Available online at http://www.nap.edu/catalog.php?record_id=5066#toc.Google Scholar
[85]Natterer, F. (1986) The Mathematics of Computerized Tomography, Wiley, New York.CrossRefGoogle Scholar
[86]Natterer, F. & Wübbeling, F. (2001) Mathematical Methods in Image Reconstruction, Monographs on Mathematical Modeling and Computation 5, SIAM, Philadelphia, PA.CrossRefGoogle Scholar
[87]Nessibi, M. M.Rachdi, L. T. & Trimeche, K. (1995) Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. Appl. 196 (3), 861884.CrossRefGoogle Scholar
[88]Niederhauser, J. J.Jaeger, M.Lemor, R.Weber, P. & Frenz, M. (2005) Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 24, 436440.CrossRefGoogle ScholarPubMed
[89]Nilsson, S. (1997) Application of Fast Backprojection Techniques for Some Inverse Problems of Integral Geometry. Linkoeping studies in science and technology, Dissertation 499, Department of Mathematics, Linkoeping University, Linkoeping, Sweden.Google Scholar
[90]Nolan, C. J. & Cheney, M. (2002) Synthetic aperture inversion. Inv. Prob. 18, 221235.CrossRefGoogle Scholar
[91]Norton, S. J. (1980) Reconstruction of a two-dimensional reflecting medium over a circular domain: Exact solution. J. Acoust. Soc. Am. 67, 12661273.CrossRefGoogle Scholar
[92]Norton, S. J. & Linzer, M. (1981) Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng., 28, 200202.Google ScholarPubMed
[93]Novikov, R. (2002) On the range characterization for the two-dimensional attenuated X-ray transform. Inv. Prob. 18, 677700.CrossRefGoogle Scholar
[94]Olafsson, G. & Quinto, E. T. (editors), (2006) The Radon transform, inverse problems, and tomography. In: American Mathematical Society Short Course 3–4 January 2005, Atlanta, GA, Proc. Symp. Appl. Math. vol. 63, AMS, Providence, RI.Google Scholar
[95]Oraevsky, A. A.Esenaliev, R. O.Jacques, S. L.Tittel, F. K. (1996) Laser optoacoustic tomography for medical diagnostics principles. In: Proc. SPIE 2676, p. 22.CrossRefGoogle Scholar
[96]Oraevsky, A. A. & Karabutov, A. A. (2002) Time-Resolved Detection of Optoacoustic Profiles for Measurement of Optical Energy Distribution in Tissues. In: V. V. Tuchin (editors), Handbook of Optical Biomedical Diagonstics, SPIE, Bellingham, WA, Chapter 10.Google Scholar
[97]Oraevsky, A. A. & Karabutov, A. A. (2003) Optoacoustic tomography. In: T. Vo-Dinh (editors), Biomedical Photonics Handbook, CRC Press, Boca Raton, FL, Chapter 34, 34-1–34-34.CrossRefGoogle Scholar
[98]Palamodov, V. P. (2000) Reconstruction from limited data of arc means. J. Fourier Anal. Appl. 6 (1), 2542.CrossRefGoogle Scholar
[99]Palamodov, V. P. (2004) Reconstructive Integral Geometry, Birkhäuser, Basel.CrossRefGoogle Scholar
[100]Palamodov, V. (2007) Remarks on the general Funk-Radon transform and thermoacoustic tomography. Preprint arxiv: math.AP/0701204.Google Scholar
[101]Paltauf, G., Burgholzer, P., Haltmeier, M. & Scherzer, O. (2005) Thermoacoustic tomography using optical line detection. In: Proc. SPIE 5864, pp. 7–14.Google Scholar
[102]Paltauf, G., Nuster, R., Haltmeier, M. & Burgholzer, P. (2007) Thermoacoustic Computed Tomography using a Mach-Zehnder interferometer as acoustic line detector. Appl. Opt. 46 (16), 33523358.CrossRefGoogle Scholar
[103]Passechnik, V. I.Anosov, A. A. & Bograchev, K. M. (2000) Fundamentals and prospects of passive thermoacoustic tomography. Crit. Rev. Biomed. Eng. 28 (3&4), 603640.CrossRefGoogle ScholarPubMed
[104]Patch, S. K. (2004) Thermoacoustic tomography – Consistency conditions and the partial scan problem. Phys. Med. Biol. 49, 111.CrossRefGoogle ScholarPubMed
[105]Patch, S. K. & Scherzer, O. (2007) Photo- and thermo-acoustic imaging (Guest Editors. Introduction). Inv. Prob. 23, S01S10.CrossRefGoogle Scholar
[106]Popov, D. A. & Sushko, D. V. (2002) A parametrix for the problem of optical-acoustic tomography. Dokl. Math. 65 (1), 1921.Google Scholar
[107]Popov, D. A. & Sushko, D. V. (2004) Image restoration in optical-acoustic tomography. Prob. Information Transmission 40 (3), 254278.CrossRefGoogle Scholar
[108]Quinto, E. T. (1980) The dependence of the generalized Radon transform on defining measures. Trans. Amer. Math. Soc. 257, 331346.CrossRefGoogle Scholar
[109]Quinto, E. T. (1993) Singularities of the X-ray transform and limited data tomography in IR2 and IR3. SIAM J. Math. Anal. 24, 12151225.CrossRefGoogle Scholar
[110]Quinto, E. T. (2006) An introduction to X-ray tomography and Radon transforms. In: American Mathematical Society Short Course, 3–4 January 2005, Atlanta, GA, Proc. Symp. Appl. Math. vol. 63, AMS, Providence RI, pp. 1–23.CrossRefGoogle Scholar
[111]Ramm, A. G. (1985) Inversion of the backscattering data and a problem of integral geometry. Phys. Lett. A 113 (4), 172176.CrossRefGoogle Scholar
[112]Ramm, A. G. (2002) Injectivity of the spherical means operator. C. R. Math. Acad. Sci. Paris 335 (12), 10331038.Google Scholar
[113]Ramm, A. G. & Zaslavsky, A. I. (1993) Reconstructing singularities of a function from its Radon transform. Math. Comput. Modelling 18 (1), 109138.CrossRefGoogle Scholar
[114]La Rivière, P. J.Zhang, J. & Anastasio, M. A. (2006) Opt. Lett. 31 (6), 781783.CrossRefGoogle Scholar
[115]Romanov, V. G. (1967) Reconstructing functions from integrals over a family of curves. Sib. Mat. Zh. 7, 12061208.Google Scholar
[116]Schuster, T. & Quinto, E. T. (2005) On a regularization scheme for linear operators in distribution spaces with an application to the spherical Radon transform. SIAM J. Appl. Math. 65 (4), 13691387.CrossRefGoogle Scholar
[117]Stefanov, P. & Uhlmann, G. (2008) Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. Am. J. Math. 130 (1), 239268.CrossRefGoogle Scholar
[118]Strichartz, R. S. (2003) A Guide to Distribution Theory and Fourier Transforms, World Scientific, Singapore; River Edge, NJ.CrossRefGoogle Scholar
[119]Tam, A. C. (1986) Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58 (2), 381431.CrossRefGoogle Scholar
[120]Tataru, D. (1995) Unique continuation for solutions to PDEs; between Hörmander's theorem and Holmgren's theorem. Comm. PDE 20, 814822.Google Scholar
[121]Tuchin, V. V. (editor) (2002) Handbook of Optical Biomedical Diagnostics, SPIE, Bellingham, WA.Google Scholar
[122]Vainberg, B. (1975) The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as t → ∞ of the solutions of nonstationary problems. Russian Math. Surveys 30 (2), 158.CrossRefGoogle Scholar
[123]Vainberg, B. (1982). Asymptotics Methods in the Equations of Mathematical Physics, Gordon & Breach, New York–London.Google Scholar
[124]Vo-Dinh, T. (editor) (2003) Biomedical Photonics Handbook. CRC Press, Boca Raton, FL.CrossRefGoogle Scholar
[125]Wang, L. (editor) Photoacoustic Imaging and Spectroscopy, CRC Press, Boca Raton, FL, to appear.Google Scholar
[126]Wang, L. V. & Wu, H. (2007) Biomedical Optics. Principles and Imaging. Wiley-Interscience, Hoboken, New Jersey.Google Scholar
[127]Wang, L. H. V. & Yang, X. M. (2007) Boundary conditions in photoacoustic tomography and image reconstruction. J. Biomed. Opt. 12 (1), 10.CrossRefGoogle ScholarPubMed
[128]Wang, X., Pang, Y., Ku, G., Xie, X., Stoica, G. & Wang, L. (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21 (7), 803806.CrossRefGoogle ScholarPubMed
[129]Xu, M. & Wang, L.-H. V. (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21, 814822.Google Scholar
[130]Xu, M. & Wang, L.-H. V. (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706.CrossRefGoogle ScholarPubMed
[131]Xu, M. & Wang, L.-H. V. (2006) Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101-01041101-22.CrossRefGoogle Scholar
[132]Xu, Y., Feng, D. & Wang, L.-H. V. (2002) Exact frequency-domain reconstruction for thermoacoustic tomography: I. Planar geometry. IEEE Trans. Med. Imaging 21, 823828.Google ScholarPubMed
[133]Xu, Y., Xu, M. & Wang, L.-H. V. (2002) Exact frequency-domain reconstruction for thermoacoustic tomography: II. Cylindrical geometry. IEEE Trans. Med. Imaging 21, 829833.Google ScholarPubMed
[134]Xu, Y., Wang, L., Ambartsoumian, G. & Kuchment, P. (2004) Reconstructions in limited view thermoacoustic tomography. Med. Phys. 31 (4), 724733.CrossRefGoogle ScholarPubMed
[135]Xu, Y., Wang, L., Ambartsoumian, G. & Kuchment, P. (2007) Limited view thermoacoustic tomography. To appear in [126].Google Scholar
[136]Zhang, J. & Anastasio, M. A. (2006) Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography. In: Proc. SPIE 6086, p. 608619.CrossRefGoogle Scholar
[137]Zobin, N. (1993). Unpublished.Google Scholar