No CrossRef data available.
Article contents
A moving boundary problem for the Stokes equations involving osmosis: Variational modelling and short-time well-posedness
Published online by Cambridge University Press: 24 November 2015
Abstract
Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem we prove the existence of classical solutions for a short-time.
Keywords
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2015
References
[1]
Amann, H. (1995) Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, xxxvi+335 pp.CrossRefGoogle Scholar
[2]
Antanovskii, L. K. (1993) Analyticity of a free boundary in plane quasi-steady flow of a liquid form subject to variable surface tension. In: Proc. of Conference: The Navier-Stokes Equations II: Theory and Numerical Methods, Oberwolfach 1991, Berlin: Springer, pp. 1–16.Google Scholar
[3]
Bergner, M., Escher, J. & Lippoth, F. (2012) On the blow up scenario for a class of parabolic moving boundary problems.
Nonlinear Anal.: T. M&A
75, 3951–3963.CrossRefGoogle Scholar
[4]
Bonaschi, G., Carrillo, J., Di Francesco, M. & Peletier, M. Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D. submitted, arXiv: 1310.411.Google Scholar
[5]
Cheng, C. H. A, Coutand, D. & Shkoller, S. (2007) Navier-Stokes equations interacting with a nonlinear elastic biofluid shell.
SIAM J. Math. Anal.
39, 742–800.Google Scholar
[6]
Escher, J. (2004) Classical solutions for an elliptic parabolic system.
Interfaces Free Boundaries
6, 175–193.Google Scholar
[7]
Escher, J. & Prokert, G. (2006) Analyticity of solutions to nonlinear parabolic equations on manifolds and an application to Stokes flow.
J. Math. Fluid Mech.
8, 1–35.Google Scholar
[8]
Escher, J. & Simonett, G. (1997) Classical solutions for Hele-Shaw models with surface tension.
Adv. Differ. Equ.
2, 619–642.Google Scholar
[9]
Frischmuth, K. & Hänler, M. (1999) Numerical analysis of the closed osmometer problem.
Z. Angew. Math. Mech.
79, 107–116.3.0.CO;2-E>CrossRefGoogle Scholar
[10]
Günther, M. & Prokert, G. (1997) Existence results for the quasistationary motion of a capillary liquid drop.
Z. Anal. ihre Anwendungen
16, 311–348.Google Scholar
[11]
Hopper, R.W. (1990) Plane stokes flow driven by capillarity on a free surface.
J. Fluid Mech.
213, 349–375.Google Scholar
[12]
Kneisel, C. (2008) Über das Stefan-Problem mit Oberflächenspannung und thermischer Unterkühlung. PhD Thesis, Universität Hannover 2007; VDM Verlag Dr. Müller.Google Scholar
[13]
Lippoth, F. & Prokert, G. (2012) Classical solutions for a one phase osmosis model. J. Evol. Equ.
12
(2), 413–434.Google Scholar
[14]
Lippoth, F. & Prokert, G. (2014) Stability of equilibria for a two-phase osmosis model.
NoDEA Nonlinear Differ. Equ. Appl.
21, 129–149.Google Scholar
[15]
Lunardi, A. (1989) Maximal space regularity in inhomogeneous initial boundary value parabolic problems. Num. Funct. Anal. Opt.
10
(3 and 4), 323–349.Google Scholar
[16]
Lunardi, A. (1995) Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, xviii+424 pp.Google Scholar
[17]
Meurs, P. J. P. v. (2011) Osmotic Cell Swelling in the Fast Diffusion Limit. MSc Thesis, Eindhoven University of Technology, http://alexandria.tue.nl/extra1/afstversl/wsk-i/meurs2011.pdf
Google Scholar
[18]
Mielke, A. (2005) Evolution in rate-independent systems. In: Handbook of Differential Equations: Evolutionary Differential Equations, Amsterdam: North-Holland, pp. 461–559.Google Scholar
[19]
Peletier, M. A. (2014) Variational Modelling: Energies, Gradient Flows, and Large Deviations, arxiv:1402.1990.Google Scholar
[20]
Rayleigh, L. (1913) On the motion of a viscous fluid.
London, Edinburgh Dublin Phil. Mag. J. Sci.
26, 776–786.Google Scholar
[21]
Rubinstein, L. & Martuzans, B. (1995) Free Boundary Problems Related to Osmotic Mass Transfer Through Semipermeable Membranes, Gakkotosho, Tokyo, vi+205 pp.Google Scholar
[22]
Solonnikov, V. A. (1999) On quasistationary approximation in the problem of motion of a capillary drop. In: Escher, J. & Simonett, G. (editors), Topics in Nonlinear Analysis, Birkhäuser, Basel, Progress in Nonlinear Differential Equations and their Applications 35, pp. 643–671.Google Scholar
[23]
Vainberg, M. M. & Trenogin, V. A. (1974) Theory of Branching of Solutions of Non-linear Equations, Noordhoff, Leyden, xxvi+485 pp.Google Scholar
[24]
Zaal, M. M. (2008) Linear Stability of Osmotic Cell Swelling. MSc Thesis, Vrije Universiteit Amsterdam. http://www.few.vu.nl/~mzl400/bin/scriptie.pdf
Google Scholar
[25]
Zaal, M. M. (2012) Cell swelling by osmosis: A variational approach.
Interfaces Free Boundaries
14, 487–520.Google Scholar
[26]
Zaal, M. M. (2013) Variational Modeling of Parabolic Free Boundary Problems. PhD Thesis, Vrije Universiteit Amsterdam. http://dare.ubvu.vu.nl/bitstream/1871/40209/1/dissertation.pdf
Google Scholar