Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T05:44:06.019Z Has data issue: false hasContentIssue false

On a model for phase separation on biological membranes and its relation to the Ohta–Kawasaki equation

Published online by Cambridge University Press:  11 March 2019

H. ABELS*
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany e-mails: helmut.abels@mathematik.uni-regensburg.de; johannes.kampmann@mathematik.uni-regensburg.de
J. KAMPMANN
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany e-mails: helmut.abels@mathematik.uni-regensburg.de; johannes.kampmann@mathematik.uni-regensburg.de

Abstract

We provide a detailed mathematical analysis of a model for phase separation on biological membranes which was recently proposed by Garcke, Rätz, Röger and the second author. The model is an extended Cahn–Hilliard equation which contains additional terms to account for the active transport processes. We prove results on the existence and regularity of solutions, their long-time behaviour, and on the existence of stationary solutions. Moreover, we investigate two different asymptotic regimes. We study the case of large cytosolic diffusion and investigate the effect of an infinitely large affinity between membrane components. The first case leads to the reduction of coupled bulk-surface equations in the model to a system of surface equations with non-local contributions. Subsequently, we recover a variant of the well-known Ohta–Kawasaki equation as the limit for infinitely large affinity between membrane components.

Type
Papers
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. A. & Fournier, J. J. F. (2003) Sobolev Spaces, Pure and Applied Mathematics, Elsevier Science, Amsterdam.Google Scholar
Allen, S. M. & Cahn, J. W. (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 10851095.CrossRefGoogle Scholar
Amann, H. (1993) Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeißer, H. J. and Triebel, H. (editors), Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Vol. 133 of Teubner-Texte Math., Teubner, Stuttgart, pp. 9126.CrossRefGoogle Scholar
Brézis, H. (1973) Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).Google Scholar
Brochet, D., Hilhorst, D. & Chen, X. (1993) Finite dimensional exponential attractor for the phase field model. Appl. Anal. 49, 197212.CrossRefGoogle Scholar
Cahn, J. W. (1961) On spinodal decomposition. Acta Metall. 9(9), 795801.CrossRefGoogle Scholar
Cahn, J. W. & Hilliard, J. E. (1958) Free energy of a nonuniform system. i. interfacial free energy. J Chem. Phys. 28(2), 258267.CrossRefGoogle Scholar
Chen, L.-Q. (2002) Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113140.CrossRefGoogle Scholar
Chen, X. (2004) Generation, propagation, and annihilation of metastable patterns. J. Differ. Equ. 206(2), 399437.CrossRefGoogle Scholar
Chen, X., Hilhorst, D. & Logak, E. (2010) Mass conserving Allen-Cahn equation and volume preserving mean curvature flow. Interface. Free Bound. 12(4), 527549.CrossRefGoogle Scholar
Choksi, R. & Ren, X. (2003) On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Statist. Phys. 113(1–2), 151176.CrossRefGoogle Scholar
Elliott, C. M. & Songmu, Z. (1986) On the Cahn-Hilliard equation. Arch. Rational Mech. Anal. 96(4), 339357.CrossRefGoogle Scholar
Evans, L. C. (2010) Partial Differential Equations, Vol. 19 of Graduate Studies in Mathematics, 2nd ed., American Mathematical Society, Providence, RI.Google Scholar
Fan, J., Sammalkorpi, M. & Haataja, M. (2010a) Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation. FEBS Lett. 584(9), 16781684.CrossRefGoogle ScholarPubMed
Fan, J., Sammalkorpi, M. & Haataja, M. (2010b) Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 81(1 Pt 1), 011908.CrossRefGoogle ScholarPubMed
Foret, L. (2005) A simple mechanism of raft formation in two-component fluid membranes. Europhys. Lett. 71(3), 508514.CrossRefGoogle Scholar
Garcke, H., Kampmann, J., Rätz, A. & Röger, M. (2016) A coupled surface-Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes. Math. Models Methods Appl. Sci. 26(6), 11491189.CrossRefGoogle Scholar
Gilbarg, D. & Trudinger, N. S. (2001) Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin. Reprint of the 1998 edition.Google Scholar
Gomez, J., Sagues, F. & Reigada, R. (2008) Actively maintained lipid nanodomains in biomembranes. Phys. Rev. E 77 (2 Pt 1), 0219907.CrossRefGoogle ScholarPubMed
Kampmann, J. (2018) Phase Separation on Biological Membranes. PhD thesis, urn:nbn:de:bvb:355-epub-374718.Google Scholar
Ladyzhenskaya, O. A. & Ural’tseva, N. N. (1968) Linear and Quasilinear Elliptic Equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York and London.Google Scholar
LaRocca, T. J., Pathak, P., Chiantia, S., Toledo, A., Silvius, J. R., Benach, J. L. & London, E. (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts (lipid rafts in the prokaryote, b. burgdorferi) 9(5), e1003353.CrossRefGoogle Scholar
McLean, W. (2000) Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge.Google Scholar
Nicolaenko, B., Scheurer, B. & Temam, R. (1987) Inertial manifold for the Cahn--Hilliard model of phase transition. In Ordinary and Partial Differential Equations (Dundee, 1986), Vol. 157 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, pp. 147160.Google Scholar
Nicolaenko, B., Scheurer, B. & Temam, R. (1989) Some global dynamical properties of a class of pattern formation equations. Comm. Part. Diff. Eq. 14(2), 245297.CrossRefGoogle Scholar
Novick-Cohen, A. (2008) The Cahn-Hilliard equation. In Handbook of Differential Equations: Evolutionary Equations, Vol. IV, Elsevier/North-Holland, Amsterdam, pp. 201228.CrossRefGoogle Scholar
Ohnishi, I., Nishiura, Y., Imai, M. & Matsushita, Y. (1999) Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term. Chaos 9(2), 329341.CrossRefGoogle ScholarPubMed
Ohta, T. & Kawasaki, K. (1986) Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 26212632.CrossRefGoogle Scholar
Pike, L. J. (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J. Lipid Res. 47(7), 15971598.CrossRefGoogle ScholarPubMed
Reigada, R. & Lindenberg, K. (2011) Raft formation in cell membranes: speculations about mechanisms and models. Advances in Planar Lipid Bilayers and Liposomes 14, 97127.CrossRefGoogle Scholar
Ren, X. & Wei, J. (2003) On energy minimizers of the diblock copolymer problem. Interface. Free Bound. 5(2), 193238.CrossRefGoogle Scholar
Renardy, M. & Rogers, R. C. (2004) An Introduction to Partial Differential Equations, Vol. 13 of Texts in Applied Mathematics, Springer-Verlag, New York.Google Scholar
Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I. & Karttunen, M. (2009) Ordering effects of cholesterol and its analogues. Biochim. Biophys. Acta, Biomembr. 1788(1), 97121.CrossRefGoogle ScholarPubMed
Schmid, F. (2017) Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. Biochim. Biophys. Acta, Biomembr. 1859(4), 509528.CrossRefGoogle ScholarPubMed
Simon, J. (1987) Compact sets in the space Lp (0, T;B). Ann. Mat. Pura Appl. 146(4), 6596.CrossRefGoogle Scholar
Temam, R. (1997) Infinite-dimensional Dynamical Systems in Mechanics and Physics, Vol. 68 of Applied Mathematical Sciences, 2nd ed., Springer-Verlag, New York.CrossRefGoogle Scholar
Triebel, H. (1992) Theory of Function Spaces. II. Vol. 84 of Monographs in Mathematics, Birkhäuser Verlag, Basel.Google Scholar
Zeidler, E. (1986) Nonlinear Functional Analysis and Its Applications. I, Springer-Verlag, New York. Fixed-point theorems, Translated from the German by Peter R. Wadsack.CrossRefGoogle Scholar