Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T15:37:52.907Z Has data issue: false hasContentIssue false

On the existence of a solution for an adsorption dynamic model with the Langmuir isotherm

Published online by Cambridge University Press:  30 July 2014

J. R. FERNÁNDEZ
Affiliation:
Departamento de Matemática Aplicada I, Universidade de Vigo, ETSI Telecomunicación, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain email: jose.fernandez@uvigo.es
M. C. MUÑIZ
Affiliation:
Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, Facultade de Matemáticas, Campus Vida s/n, 15782 Santiago de Compostela, Spain email: mcarmen.muniz@usc.es
C. NÚÑEZ
Affiliation:
Departamento de Didáctica de las Ciencias Experimentales, Facultad de Ciencias de la Educación, Campus Norte, 15782 Santiago de Compostela, Spain email: cristina.nunez.garcia@usc.es

Abstract

In this paper, we study an adsorption model arising in the dynamics of several surfactants at the air-water interface, where the Langmuir isotherm is employed for modelling the time-dependent surface concentration, providing a nonlinear dynamical boundary condition. Existence of a weak solution is proved by using the Rothe method for a semi-discrete problem in time. After obtaining some a priori estimates and passing to the limit in the time discretization parameter, we conclude that the original Langmuir problem has a bounded solution. An uniqueness result is also given.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Brézis, H. (1985) Análisis Funcional: Teoría y Aplicaciones, Madrid, Alianza.Google Scholar
[2]Chang, C. H. & Franses, E. I. (1995) Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data and mechanisms. Colloids Surf. 100, 145.CrossRefGoogle Scholar
[3]Chipot, M. (2000) Elements of Nonlinear Analysis, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
[4]Duvaut, G. & Lions, J. L. (1972) Les Inéquations en Mécanique et en Physique, Paris, Dunod.Google Scholar
[5]Eastoe, J. & Dalton, J. S. (2000) Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid Interface Sci. 85, 103144.CrossRefGoogle ScholarPubMed
[6]Egry, I. & Ricci, E., Novakovic, R. & Ozawa, S. (2010) Surface tension of liquid metals and alloys: Recent developments. Adv. Colloid Interface Sci. 159, 198212.CrossRefGoogle ScholarPubMed
[7]Evans, L. C. (1998) Partial differential equations, Graduate studies in mathematics. 19. Providence. American Mathematical Society.Google Scholar
[8]Fernández, J. R., Kalita, P., Migórski, S., Muñiz, M. C. & Núñez, C. (2014) Variational analysis of the Langmuir Hinshelwood dynamic mixed-kinetic adsorption model. Nonlinear Anal.: Real World Appl. 15, 205220.CrossRefGoogle Scholar
[9]Fernández, J. R. & Muñiz, M. C. (2011) Numerical analysis of surfactant dynamics at air-water interface using the Henry isotherm. J. Math. Chem. 49, 16241645.CrossRefGoogle Scholar
[10]Fernández, J. R., Muñiz, M. C. & Núñez, C. (2012) A mixed kinetic-diffusion surfactant model for the Henry isotherm. J. Math. Anal. Appl. 389, 670684.CrossRefGoogle Scholar
[11]Fürst, T. & Vodák, R. (2009) Diffusion with nonlinear adsorption. Acta Applicandae Math. 105, 303321.CrossRefGoogle Scholar
[12]Galiano, G. & Velasco, J. (2006) A dynamic boundary value problem arising in the ecology of mangroves. Nonlinear Anal. Real World Appl. 7, 11291144.CrossRefGoogle Scholar
[13]Gundabala, V. R., Zimmerman, W. B. & Routh, A. F. (2004) A model for surfactant distribution in latex coatings. Langmuir 20, 87218727.CrossRefGoogle Scholar
[14]McCoy, B. J. (1983) Analytical solutions for diffusion-controlled adsorption kinetics with nonlinear adsorption isotherms. Colloid Polym. Sci. 261, 535539.CrossRefGoogle Scholar
[15]Miller, R. (1981) On the solution of diffusion controlled adsorption kinetics for any adsorption isotherms. Colloid Poly. Sci. 259, 375381.CrossRefGoogle Scholar
[16]Miller, R., Joos, P. & Fainerman, V. B. (1994) Dynamic surface and interfacial tensions of surfactant and polymer solutions. Adv. Colloid Interface Sci. 49, 249302.CrossRefGoogle Scholar
[17]Rodrigues, J. F. (1987) Obstacle Problems in Mathematical Physics, Amsterdam, North Holland.Google Scholar
[18]Roubíček, T. (2005) Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel.Google Scholar
[19]Showalter, R. E. (1997) Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence.Google Scholar
[20]Vrábel, V. & Slodicka, M. (2013) Nonlinear parabolic equation with a dynamical boundary condition of diffusive type. Appl. Math. Comput. 222, 372380.Google Scholar