Article contents
Quantum entropic regularization of matrix-valued optimal transport
Published online by Cambridge University Press: 28 September 2017
Abstract
This article introduces a new notion of optimal transport (OT) between tensor fields, which are measures whose values are positive semidefinite (PSD) matrices. This “quantum” formulation of optimal transport (Q-OT) corresponds to a relaxed version of the classical Kantorovich transport problem, where the fidelity between the input PSD-valued measures is captured using the geometry of the Von-Neumann quantum entropy. We propose a quantum-entropic regularization of the resulting convex optimization problem, which can be solved efficiently using an iterative scaling algorithm. This method is a generalization of the celebrated Sinkhorn algorithm to the quantum setting of PSD matrices. We extend this formulation and the quantum Sinkhorn algorithm to compute barycentres within a collection of input tensor fields. We illustrate the usefulness of the proposed approach on applications to procedural noise generation, anisotropic meshing, diffusion tensor imaging and spectral texture synthesis.
- Type
- Papers
- Information
- European Journal of Applied Mathematics , Volume 30 , Special Issue 6: Applied Optimal Transport , December 2019 , pp. 1079 - 1102
- Copyright
- © Cambridge University Press 2017
Footnotes
The work of Gabriel Peyré has been supported by the European Research Council (ERC project SIGMA-Vision). J. Solomon acknowledges support of Army Research Office grant W911NF-12-R-0011 (“Smooth Modeling of Flows on Graphs”).
References
- 17
- Cited by