Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T08:53:03.457Z Has data issue: false hasContentIssue false

Self-similar solutions of the second kind for the modified porous medium equation

Published online by Cambridge University Press:  26 September 2008

Josephus Hulshof
Affiliation:
Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, Netherlands
Juan Luis Vazquez
Affiliation:
División de Matemάaticas, Universidad Autόonoma de Madrid, Cantoblanco, 28049 Madrid, Spain

Abstract

We construct compactly supported self-similar solutions of the modified porous medium equation (MPME)

They have the form

where the similarity exponents α and β depend on ε, m and the dimension N. This corresponds to what is known in the literature as anomalous exponents or self-similarity of the second kind, a not completely understood phenomenon. This paper performs a detailed study of the properties of the anomalous exponents of the MPME.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A]Aronson, D. 1986 The porous medium equation. In: Farand, A. & Primicerio, M. (eds.), Some Problems in Nonlinear Diffusion, Lecture Notes in Mathematics Vol. 1224. Springer-Verlag.Google Scholar
[AV]Aronson, D. & Vazquez, J. L.Anomalous exponents in nonlinear diffusion, preprint.Google Scholar
[B]Barenblatt, G. I. 1987 Dimensional Analysis. Gordon and Breach, New York.Google Scholar
[B2]Barenblatt, G. I. 1983 Self-similar turbulence propagation from an instantaneous plane source. Barenblatt, G. I., Iooss, G. & Joseph, D. D. (eds), Nonlinear dynamics and turbulence. Pitman, Boston, pp. 4860.Google Scholar
[BERG]Barenblatt, G. I., Entov, V. M. & Ryzhik, V. M. 1990 Theory of Fluid Flows Through Natural Rocks. Kluwer, Dordrecht.CrossRefGoogle Scholar
[BHV]Bernis, F., Hulshof, J. & Vazquez, J. L. 1993 A very singular solution for the dual porous medium equation and the asymptotic behaviour of general solutions. J. Reine Angew. Math. 435, 131.Google Scholar
[CGO]Chen, L.-Y., Goldenfeld, N. & Oono, Y. 1991 Renormalization-group theory for the modified porous-medium equation. Physical Review A 44(10), 65446550.CrossRefGoogle ScholarPubMed
[FK]Friedman, A. & Kamin, S. 1980 The asymptotic behaviour of gas in an n-dimensional porous medium. Trans. Amer. Math. Soc. 262, 551563.Google Scholar
[H]Hulshof, J. Similarity solutions of the porous medium equation with sign changes. J. Math. Anal. Appl. (to appear).Google Scholar
[H2]Hulshof, J.Similarity solutions of the k - єe model for turbulence, preprint.Google Scholar
[HV]Hulshof, J. & Bazquez, J. L. The Cauchy problem for the modified porous medium equation, in preparation.Google Scholar
[KPV]Kamin, S., Peletier, L. A. & Vazquez, J. L. 1991 On the Barenblatt equation of elastoplastic filtration. IMA preprint Series No. 817.Google Scholar
[KV]Kamin, S. & Vazquez, J. L. The propagation of turbulent bursts, preprint.Google Scholar
[MvD]Miller, C. A. & Van Duijn, C. J. Similarity solutions for gravity-dominated spreading of a lens of organic contaminant. IMA volume on ‘Environmental Studies’ (to appear).Google Scholar