Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T18:49:58.077Z Has data issue: false hasContentIssue false

A sharp interface limit of the phase field equations: one-dimensional and axisymmetric

Published online by Cambridge University Press:  26 September 2008

Barbara E. E. Stoth
Affiliation:
Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D–53115 Bonn, Germany

Abstract

We study the singular limit of the dimensionless phase-field equations

We consider two cases: either the space dimension is 1 and then ɛ tends to zero; or the solutions are radially symmetric and then both ɛ and α tend to zero. It turns out that, in the first case, the limiting functions solve the Stefan problem with kinetic undercooling, provided the initial temperature is small compared to the surface tension and the latent heat. In the second case, the limiting functions satisfy the Stefan problem coupled with the Gibbs–Thomson law for the melting temperature. We show, in addition, that the multiplicity of the interface is always one, in a sense to be explained at the end of § 1. As main tool we use energy type estimates, and prove that the formal first-order asymptotic expansion with respect to ɛ in fact gives an approximation of the exact solution. Our results hold without smoothness assumptions on the limiting Stefan problem.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[BF] Berger, M. S. & Fraenkel, L. E. (1970) On the asymptotic solution of a nonlinear Dirichlet problem. J. Math. Mech. 19, 553–58.Google Scholar
[BKl] Bronsard, L. & Kohn, R. V. (1991) Motion by mean curvature as the singular limit of Ginzburg–Landau Dynamics. J. Diff. Eqns., 90, 211237.CrossRefGoogle Scholar
[BK2] Bronsard, L. & Kohn, R. V. (1990) On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl. Math. 18, 983997.CrossRefGoogle Scholar
[BH] Bronsard, L. & Hilhorst, D. (1992) On the slow dynamics for the Cahn–Hilliard equation in one space dimension. Proc. R. Soc. Lond. A, 439, 669682.Google Scholar
[BS] Bronsard, L. & Stoth, B. (1994) Volume preserving mean curvature flow as a limit of a nonlocal Ginzburg–Landau equation. CNA-Preprint, Pittsburgh (SIAM Math. Anal., to appear).Google Scholar
[Cal] Caginalp, G. (1984) In Applications of Field Theory to Statistical Mechanics: Lecture Notes in Physics 216, ed. Garrido, L., Springer.Google Scholar
[Ca2] Caginalp, G. (1986) An analysis of a phase field model of a free boundary. Arch. Rat. Mech. Anal., 92, 205245.CrossRefGoogle Scholar
[Ca3] Caginalp, G. (1989) Stefan and Hele–Shaw type models as asymptotic limits of the phasefield equations. Phys. Rev. A, 39, 58875896.CrossRefGoogle ScholarPubMed
[CF1] Caginalp, G. & Fife, P. C. (1986) Higher-order phase field models and detailed anisotropy. Phys. Rev. B, 34, 49404943.CrossRefGoogle ScholarPubMed
[CF2] Caginalp, G. & Fife, P. C. (1988) Dynamics of layered interfaces arising from boundaries. SIAM J. Appl. Math., 48 (3), 506518.CrossRefGoogle Scholar
[CXC] Caginalp, G. & Xinfu, Chen (1992) Phase field equations in the singular limit of sharp interface problems. In: On the Evolution of Phase Boundaries, Gurtin, M. & McFadden, G. B., Ed, IMA Volume of Mathematics and Its Applications 43, Springer, pp. 195217.Google Scholar
[CP] Carr, J. & Pego, R. L. (1989) Metastable patterns in solutions of ut = ɛ2uxxf(u). Comm. Pure Appl. Math., 42, 523576.CrossRefGoogle Scholar
[CGG] Chen, Y.-G., Giga, Y. & Goto, Sh. (1991) Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Diff. Geo., 33, 749786.Google Scholar
[CL] Collins, J. B. & Levine, H. (1985) Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B, 31, 61196122.CrossRefGoogle ScholarPubMed
[ESS] Evans, L. C., Soner, H. M. & Souganidis, P. E. (1992) Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 10971123.CrossRefGoogle Scholar
[ES] Evans, L. C. & Spruck, J. (1991) Motion of level sets by mean curvature I. J. Diff. Geo., 33, 635681.Google Scholar
[Fix] Fix, G. J. (1983) Phase field methods for free boundary problems. In Free Boundary Problems: Theory and Applications, Fasano, B. & Primicerio, M., eds, Pitman, London, pp. 580589.Google Scholar
[GGI] Giga, Y., Goto, Sh. & Ishii, H. (1992) Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal., 23 (4), 821835.CrossRefGoogle Scholar
[GL] Ginzburg, V. L. & Landau, L. D. (1950) Kteorii sverkhrovodimosti. Zh. Eksp. Teor. Fix., 20 (English translation: On the theory of superconductivity, Collected papers of L. D. Landau, ed. by Ter Haar, D., Pergamon, Oxford, 1965, 217225).Google Scholar
[HHM] Halperin, B. I., Hohenberg, P. C. & Shang-Keng, Ma (1974) Renormalization group theory for critical dynamics I, Recursion relations and effects of energy conservation. Phys. Rev. B, 10, 139153.CrossRefGoogle Scholar
[La] Langer, J. S. (1986) Models of pattern formation in first-order phase transitions. Directions in Condensed Matter Physics. World Scientific, Singapore, pp. 165186.CrossRefGoogle Scholar
[Lu] Luckhaus, St. (1990) Solutions of the two phase Stefan problem with the Gibbs–Thomson law for the melting temperature. Euro. J. Appl. Math. 1, 101111.CrossRefGoogle Scholar
[MSch] De Mottoni, P. & Schatzman, M. (1989) Évolution géométrique d'interface. Comp. Rend. Paris, T-309, 453458.Google Scholar
[Pe] Pego, R. L. (1989) Front migration in the nonlinear Cahn–Hilliard equation. Proc. Roy. Soc. London A, 422, 261278.Google Scholar
[PF] Penrose, P. & Fife, C. F. (1990) Thermodynamically consistent models for the kinetics of phase transitions. Physica D, 43, 4462.CrossRefGoogle Scholar
[St] Stoth, B. E. E. (1992) Ein Modell vom Stefan–Typ als Grenzwert von Phasenfeldgleichungen. Bonner Math. Schr., 242.Google Scholar