Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T06:43:11.419Z Has data issue: false hasContentIssue false

Solvability of free boundary problems for steady groundwater flow

Published online by Cambridge University Press:  12 May 2015

A. Yu. BELIAEV*
Affiliation:
Water Problem Institute, Moscow, Russia email: beliaev@aqua.laser.ru

Abstract

In this paper the free boundary problem for groundwater phreatic surface is represented in the form of a variational principle. It is proved that the flow domain Ω that solves the problem is a minimizer of some functional Λ(Ω). Weak solutions are introduced as minimizers of the lower semi-continuous regularization of Λ(⋅). Within this approach the existence of weak solutions is proved for a wide class of input data.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alt, H. W. (1979) Strömungen durch inhomogene poröse Medien mit freiem Rand. J. Reine Angew. Math. 305, 89115.Google Scholar
[2]Anakhaev, K. N. (2009) A particular analytical solution of a steady-state flow of a groundwater mound. Water Resour. 36 (5), 507512.CrossRefGoogle Scholar
[3]Antontsev, S. N., Díaz, J. I. & Shmarev, S. I. (2002) Energy Methods for Free Boundary Problems: With Applications to Nonlinear PDEs and Fluid Mechanics, Springer, New York.CrossRefGoogle Scholar
[4]Baiocchi, C., Comincioli, V., Magenes, E. & Pozzi, G. A. (1973) Free boundary problems in the theory of fluid flow through porous media: Existence and uniqueness theorems. Ann. Mat. Pura Appl. 97 (4), 182.CrossRefGoogle Scholar
[5]Baiocchi, C. & Friedman, A. (1977) A filtration problem in a porous medium with variable permeability. Ann. Mat. Pura Appl. 114, 377393.CrossRefGoogle Scholar
[6]Bear, J., Zaslavsky, D. & Irmay, S. (1968) Physical Principles of Water Percolation and Seepage, UNESCO, Paris.Google Scholar
[7]Brézis, H., Kinderlehrer, D. & Stampacchia, G. (1978) Sur une nouvelle formulation du problème d'éqoulement à travers une digue. C. R. Acad. Sci. Paris, Ser. A, 287 (9), 711714.Google Scholar
[8]Chiang, W. H. & Kinzelbach, W. (2001) 3D Groundwater Modeling with PMWIN: A Simulation System for Modelling Groundwater Flow and Pollution, Springer-Verlag, Berlin.Google Scholar
[9]Chipot, M. (1984) Variational Inequalities and Flow through Porous Media, Applied Mathematical Sciences Series, Vol. 52, Springer, New York.CrossRefGoogle Scholar
[10]Egorov, A. G., Dautov, R. Z., Nieber, J. L. & Sheshukov, A. Y. (2003) Stability analysis of gravity-driven infiltrating flow. Water Resour. Res. 39 (9), 18861928.CrossRefGoogle Scholar
[11]Emikh, V. N. (2008) Mathematical models of groundwater flow with a horizontal drain. Water Resour. 35 (2), 205212.CrossRefGoogle Scholar
[12]Friedman, A. (1982) Variational Principles and Free Boundary Problems, Willey & Sons, New York.Google Scholar
[13]Green, W. H. & Ampt, G. A. (1911) Studies in soil physics. Part 1. The flow of air and water through soils. J. Agr. Sci. 4, 124.Google Scholar
[14]Kohn, R. V. & Strang, G. (1986) Optimal design and relaxation of variational problems I, II, III. Commun. Pure Appl. Math. 39, 113–137, 139–182, 353377.CrossRefGoogle Scholar
[15]Ladyzhenskaya, O. A. & Ural'tseva, N. N. (1968) Linear and Quasilinear Elliptic Equations. Academic Press, New York.Google Scholar
[16]McCaffery, F. G. & Bennion, D. W. (1974) The effect of wettability on two-phase relative permeabilities. J. Can. Pet. Technol. 13 (4), 4253.CrossRefGoogle Scholar
[17]Milton, G. W. (2002) The Theory of Composites, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[18]Philip, J. R. (1975) Stability analysis of infiltration. Soil Sci. Soc. Am. Proc. 39 (6), 10421049.CrossRefGoogle Scholar
[19]Polubarinova-Kochina, P. Ya. (1962) Theory of Ground Water Movement. Trans. from the Russian by J.M. Roger De Wiest, Princeton University Press, Princeton.Google Scholar
[20]Pop, I. S., Radu, F. A. & Knabner, P. (2004) Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards' equation. SIAM J. Numer. Anal. 42 (4), 14521478.Google Scholar
[21]Richards, L. A. (1931) Capillary conduction of liquids through porous medium. Physics 1, 318333.CrossRefGoogle Scholar
[22]Schweizer, B. (2007) Regularization of outflow problems in unsaturated porous media with dry regions. J. Differ. Equ. 237, 278306.CrossRefGoogle Scholar
[23]Schweizer, B. & Lenzinger, M. (2010) Two-phase flow equations with outflow boundary conditions in the hydrophobic-hydrophilic case. Nonlinear Anal. TMA 73 (4), 840853.Google Scholar
[24]Strang, G. & Fix, G. J. (1973) An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
[25]Temam, R. (1979) Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Company, Amsterdam.Google Scholar
[26]Ustohal, P., Stauffer, F. & Dracos, T. (1998) Measurement and modelling of hydraulic characteristics of unsaturated porous media with mixed wettability. Contaminant Hydrol. 33, 537.CrossRefGoogle Scholar