Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:20:40.510Z Has data issue: false hasContentIssue false

A stochastic-statistical residential burglary model with independent Poisson clocks

Published online by Cambridge University Press:  05 February 2020

CHUNTIAN WANG
Affiliation:
Department of Mathematics, The University of Alabama, Tuscaloosa, AL35487, USA email: cwang27@ua.edu
YUAN ZHANG
Affiliation:
School of Mathematical Sciences, Peking University, Beijing, China, 100871 email: zhangyuan@math.pku.edu.cn
ANDREA L. BERTOZZI
Affiliation:
Departments of Mathematics and Mechanical and Aerospace Engineering University of California, Los Angeles, Los Angeles, CA90095, USA email: bertozzi@ucla.edu
MARTIN B. SHORT
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA30332, USA email: mbshort@math.gatech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Residential burglary is a social problem in every major urban area. As such, progress has been to develop quantitative, informative and applicable models for this type of crime: (1) the Deterministic-time-step (DTS) model [Short, D’Orsogna, Pasour, Tita, Brantingham, Bertozzi & Chayes (2008) Math. Models Methods Appl. Sci.18, 1249–1267], a pioneering agent-based statistical model of residential burglary criminal behaviour, with deterministic time steps assumed for arrivals of events in which the residential burglary aggregate pattern formation is quantitatively studied for the first time; (2) the SSRB model (agent-based stochastic-statistical model of residential burglary crime) [Wang, Zhang, Bertozzi & Short (2019) Active Particles, Vol. 2, Springer Nature Switzerland AG, in press], in which the stochastic component of the model is theoretically analysed by introduction of a Poisson clock with time steps turned into exponentially distributed random variables. To incorporate independence of agents, in this work, five types of Poisson clocks are taken into consideration. Poisson clocks (I), (II) and (III) govern independent agent actions of burglary behaviour, and Poisson clocks (IV) and (V) govern interactions of agents with the environment. All the Poisson clocks are independent. The time increments are independently exponentially distributed, which are more suitable to model individual actions of agents. Applying the method of merging and splitting of Poisson processes, the independent Poisson clocks can be treated as one, making the analysis and simulation similar to the SSRB model. A Martingale formula is derived, which consists of a deterministic and a stochastic component. A scaling property of the Martingale formulation with varying burglar population is found, which provides a theory to the finite size effects. The theory is supported by quantitative numerical simulations using the pattern-formation quantifying statistics. Results presented here will be transformative for both elements of application and analysis of agent-based models for residential burglary or in other domains.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2020

References

Applebaum, D. (2009) Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Babu, G. J. & Feigelson, E. D. (2015) Spatial point processes in astronomy. J. Stat. Plan. Inference 50, 311326.CrossRefGoogle Scholar
Bellomo, N., Colasuonno, F. & Knopoff, D. & Soler, J. (2015) From a systems theory of sociology to modeling the onset and evolution of criminality. Netw. Heterog. Media 10, 421441.CrossRefGoogle Scholar
Berestycki, H., Rodrí, N. & Ryzhik, L. (2013) Traveling wave solutions in a reaction-diffusion model for criminal activity. Multiscale Model. Simul. 11, 10971126.CrossRefGoogle Scholar
Bertero, M., Boccacci, P., Desiderà, G. & Vicidomini, G. (2009) Image deblurring with Poisson data: from cells to galaxies. Inverse Prob. 25, 123006.CrossRefGoogle Scholar
Bertozzi, A. L., Johnson, S. & Ward, M. J. (2016) Mathematical modeling of crime and security: special issue of EJAM, Euro. J. Appl. Math. 27, 311316.CrossRefGoogle Scholar
Bertsekas, D. P. & Tsitsiklis, J. N. (2008) Introduction to Probability, Athena Scientific, Belmont, Mass.Google Scholar
Bichteler, K. (2002) Stochastic Integration with Jumps, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Brockmann, D., Hufnagel, L. & and Geisel, T. (2006) The scaling laws of human travel. Nature 439, 462465.CrossRefGoogle ScholarPubMed
Budd, T. (1999) Burglary of Domestic Dwellings: Findings from the British Crime Survey, Home Office Statistical Bulletin, Vol., Government Statistical Service, London.Google Scholar
Buttenschoen, A., Kolokolnikov, T., Ward, M. J. & Wei, J. (2018) Cops-on-the-Dots: The linear stability of crime hotspots for a 1-D reaction-diffusion model of urban crime.CrossRefGoogle Scholar
Cantrell, R. and Cosner, C. and Manásevich, R. (2012) Global bifurcation of solutions for crime modeling equations. SIAM J. Math. Anal. 44, 13401358.CrossRefGoogle Scholar
Cao, L. & Grabchak, M. (2014) Smoothly truncated levy walks: Toward a realistic mobility model. In: 2014 IEEE 33rd Int. Performance Computing and Communications Conference, (IPCCC), December 2014, Austin, Texas, USA, 18.Google Scholar
CHANG, Y., TZOU, J., WARD, M. & WEI, J. (2018) Refined stability thresholds for localized spot patterns for the Brusselator model in $\mathbb{R}^2$ . Euro. J. Appl. Math., 30, 791828.CrossRefGoogle Scholar
Chaturapruek, S., Breslau, J., Yazdi, D., Kolokolnikov, T. & McCalla, S. G. (2013) Crime modeling with Lévy flights. SIAM J. Appl. Math. 73, 17031720.CrossRefGoogle Scholar
Chow, S. N., Li, W. & Zhou, H. (2018) Entropy dissipation of Fokker-Planck equations on graphs. Discrete Contin. Dyn. Syst. 38, 49294950.CrossRefGoogle Scholar
Chung, K. L. & Williams, R. J. (2014) Introduction to Stochastic Integration, Birkhäuser/Springer, New York.CrossRefGoogle Scholar
Citi, L., Ba, D., Brown, E. N. & Barbieri, R. (2014) Likelihood methods for point processes with refractoriness. Neural Comput. 26, 237263.CrossRefGoogle ScholarPubMed
Ding, H., Khan, M. E., Sato, I. Grabchak, M. & Sugiyama, M. (2018) Bayesian nonparametric Poisson-process allocation for time-sequence modeling. In: Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 84, PMLR, Lanzarote, Spain.Google Scholar
Durrett, R. (1996) Stochastic Calculus, CRC Press, Boca Raton, Florida.Google Scholar
Durrett, R. (1999) Essentials of Stochastic Processes, Springer-Verlag, New York.Google Scholar
Durrett, R. (2002) Probability Models for DNA Sequence Evolution, Springer-Verlag, New York.CrossRefGoogle Scholar
Durrett, R. (2010) Probability: Theory and Examples, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Ellam, L., Girolami, M., Pavliotis, G. A. & Wilson, A. (2018) Stochastic modeling of urban structure. Proc. R. Soc. A. 474, pp. 120.CrossRefGoogle Scholar
Embrechts, P., Frey, R. & Furrer, H. (2001) Stochastic processes in insurance and finance. In: Stochastic Processes: Theory and Methods. North-Holland, Amsterdam, 365412.CrossRefGoogle Scholar
Ethier, S. N. & Kurtz, T. G. (1986) Markov Processes, John Wiley & Sons, Inc., New York.CrossRefGoogle Scholar
Erbar, M. & Maas, J. (2012) Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206, 9971038.CrossRefGoogle Scholar
Erbar, M. & Maas, J. (2014) Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst. 34, 13551374.CrossRefGoogle Scholar
Fathi, M. & Maas, J. (2016) Entropic Ricci curvature bounds for discrete interacting systems. Ann. Appl. Probab. 26, 17741806.CrossRefGoogle Scholar
Farrell, G. & Pease, K. (2001) Repeat Victimization, Criminal Justice Press.Google Scholar
Franco, T. (2014) Interacting particle systems: hydrodynamic limit versus high density limit. In: From Particle Systems to Partial Differential Equations, Springer, Heidelberg, pp. 179189.CrossRefGoogle Scholar
Gau, J. M. & Pratt, T. C. (2010) Revisiting broken windows theory: Examining the sources of the discriminant validity of perceived disorder and crime. J. Crim. Justice 38, 758766.CrossRefGoogle Scholar
Gleeson, J. P., Hurd, T. R., Melnik, S. & Hackett, A. (2018) Systemic risk in banking networks without Monte Carlo simulation, In: Advances in Network Analysis and its Applications. Springer, Berlin, pp. 2756.Google Scholar
Gleeson, J. P. & Porter, M. A. (2018) Message-passing methods for complex contagions. In: Complex spreading phenomena in social systems. Computational Social Sciences. Springer, Cham.Google Scholar
Gomez, D., Ward, M. J. & Wei, J. (2019) The linear stability of symmetric spike patterns for a bulk-membrane coupled Gierer–Meinhardt model. SIAM J. Appl. Dyn. Sys. 18, 729768.CrossRefGoogle Scholar
González, M. C., Hidalgo, C. A. & Barabási, A.-L. (2008) Understanding individual human mobility patterns. Nature 453, 779782.CrossRefGoogle ScholarPubMed
Good, I. J. (1986) Some statistical applications of Poisson’s work. Statist. Sci. 1, 157180.CrossRefGoogle Scholar
Gorr, W. & Lee, Y. (2015) Early warning system for temporary crime hot spots. J. Quant. Criminol. 31, 2547.CrossRefGoogle Scholar
Goudon, T., Nkonga, B., Rascle, M. & Ribot, M. (2015) Self-organized populations interacting under pursuit-evasion dynamics. Phys. D 304/305, 122.CrossRefGoogle Scholar
Guo, M. Z., Papanicolaou, G. C. & Varadhan, S. R. S. (1988) Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm. Math. Phys. 118, 3159.CrossRefGoogle Scholar
Hamba, F. (2018) Turbulent energy density in scale space for inhomogeneous turbulence. J. Fluid Mech. 842, 532553.CrossRefGoogle Scholar
Hameduddin, I., Meneveau, C., Zaki, T. A. & Gayme, D. F. (2018) Geometric decomposition of the conformation tensor in viscoelastic turbulence. J. Fluid Mech. 842, 395427.CrossRefGoogle Scholar
Harcourt, B. E. (1998) Reflecting on the subject: A critique of the social influence conception of deterrence, the broken windows theory, and order-maintenance policing New York style. Michigan Law Rev. 97, 291389.CrossRefGoogle Scholar
He, S. W., Wang, J. G. & Yan, J. A. (1992) Semimartingale Theory and Stochastic Calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL.Google Scholar
Illingworth, S. J., Monty, J. P. & Marusic, I. (2018) Estimating large-scale structures in wall turbulence using linear models, J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jacod, J. & Shiryaev, A. N. (2003) Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin.CrossRefGoogle Scholar
James, A., Plank, M. J. & Edwards, A. M. (2011) Assessing Lévy walks as models of animal foraging. J. R. Soc. Interface 8, 12331247.CrossRefGoogle ScholarPubMed
Jiménez, J. (2018) Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Johnson, S. D., Bernasco, W., Bowers, K. J., Elffers, H., Ratcliffe, J. Rengert, G., & Townsley, M. (2007) Space-time patterns of risk: A cross national assessment of residential burglary victimization. J. Quant. Criminol. 23, 201219.CrossRefGoogle Scholar
Johnson, S. D. & Bowers, K. J. (2004) The stability of space-time clusters of burglary. Br. J. Criminol. 44, 5565.CrossRefGoogle Scholar
Johnson, S. D., Bowers, K. J., & Hirschfield, A. (1997) New insights into the spatial and temporal distribution of repeat victimization. Br. J. Criminol. 37, 224241.CrossRefGoogle Scholar
Jones, P. A., Brantingham, P. J. & Chayes, L. R. (2010) Statistical models of criminal behavior: the effects of law enforcement actions. Math. Models Methods Appl. Sci. 20, 13971423.CrossRefGoogle Scholar
Karlin, S. & Taylor, H. M. (1981) A Second Course in Stochastic Processes, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London.Google Scholar
Kipnis, C. & Landim, C. (1999) Scaling Limits of Interacting Particle Systems, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Kipnis, C., Olla, S. & Varadhan, S. R. S. (1989) Hydrodynamics and large deviation for simple exclusion processes. Comm. Pure Appl. Math. 42, 115137.CrossRefGoogle Scholar
Kolokolnikov, T., Ward, M. J. & Wei, J. (2014) The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete Contin. Dyn. Syst. Ser. B 19, 13731410.Google Scholar
Kolokolnikov, T., Ward, M. J., Tzou, J. & Wei, J. (2018) Stabilizing a homoclinic stripe. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 13 pages.Google ScholarPubMed
Kolokolnikov, T. & Wei, J. (2018) Pattern formation in a reaction-diffusion system with space-dependent feed rate. SIAM Review 60, 626645.CrossRefGoogle Scholar
Lacey, A. & Tsardakas, M. (2016) A mathematical model of serious and minor criminal activity. Euro. J. Appl. Math. 27, 403421.CrossRefGoogle Scholar
Levajković, T., Mena, H. & Zarfl, M. (2016) Lévy processes, subordinators and crime modeling. Novi. Sad. J. Math. 46, 6586.CrossRefGoogle Scholar
Lee, C. & Wilkinson, D. J. (2019) A Hierarchical model of nonhomogeneous Poisson processes for twitter retweets. J. Am. Stat. Assoc. 0, 123.Google Scholar
Liggett, T. M. (1986) Lectures on stochastic flows and applications, Published for the Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin.Google Scholar
Liggett, T. M. (1980) Interacting Markov processes. In: Biological Growth and Spread, Lecture Notes in Biomathematics, Vol. 38. Springer, Berlin, Heidelberg, pp. 145156.CrossRefGoogle Scholar
Liggett, T. M. (1985) Interacting Particle Systems, Springer-Verlag, New York.CrossRefGoogle Scholar
Liggett, T. M. (2010) Continuous Time Markov Processes, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Lloyd, D. J. B. & O’Farrell, H. (2013) On localised hotspots of an urban crime model. Phys. D 253, 2339.CrossRefGoogle Scholar
Lukasik, M., Cohn, T. & Bontcheva, K. (2015) Point process modelling of rumour dynamics in social media. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, (ACL), Beijing, China, July 2015, pp. 518523.CrossRefGoogle Scholar
Mantegna, R. N. & Stanley, H. E. (1994) Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 29462949.CrossRefGoogle ScholarPubMed
Mariani, M. C. & Liu, Y. (2007) Normalized truncated Levy walks applied to the study of financial indices. Physica A: Stat. Mech. Appl. 377, 590598.CrossRefGoogle Scholar
Ajmone Marsan, G., Bellomo, N. & Gibelli, L. (2016) Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics. Math. Models Methods Appl. Sci. 26, 10511093.CrossRefGoogle Scholar
Matacz, A. (2000) Financial modeling and option theory with the truncated Lévy process. Int. J. Theor. Appl. Financ. 3, 143160.CrossRefGoogle Scholar
McCalla, S. G., Short, M. B. & Brantingham, P. J. (2013) The effects of sacred value networks within an evolutionary, adversarial game. J. Stat. Phys. 151, 673688.CrossRefGoogle Scholar
Métivier, M. (1982) Semimartingales, Walter de Gruyter & Co., Berlin-New York.CrossRefGoogle Scholar
Métivier, M. & Pellaumail, J. (1980) Stochastic Integration, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont.Google Scholar
Miranda, L. C. & Riera, R. (2001) Truncated Lévy walks and an emerging market economic index. Physica A: Stat. Mech. Appl. 297, 509520.CrossRefGoogle Scholar
Mohler, G. O., Short, M. B. & Brantingham, P. J. (2017) The concentration-dynamics tradeoff in crime hot spotting. In Unraveling the Crime-Place Connection, Vol. 22, Routledge, pp. 1940.Google Scholar
Mohler, G. O., Short, M. B. & Brantingham, P. J., Schoenberg, F. P. & Tita, G. E. (2011) Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106, 100108.CrossRefGoogle Scholar
Mohler, G. O., Short, M. B., Malinowski, S., Johnson, M., Tita, G. E., Bertozzi, A. L. & Brantingham, P. J. (2015) Randomized controlled field trials of predictive policing, J. Am. Stat. Assoc., 110, 13991411.CrossRefGoogle Scholar
Mourrat, J. (2012) A quantitative central limit theorem for the random walk among random conductance, Electron. J. Probab. 17, 17.CrossRefGoogle Scholar
Othmer, H. G., Dunbar, S. R. & Alt, W. (1988) Models of dispersal in biological systems. J. Math. Biol. 26, 263298.CrossRefGoogle ScholarPubMed
Pan, C., Li, B., Wang, C., Zhang, Y., Geldner, N., Wang, L. & Bertozzi, A. L. (2018) Crime modeling with truncated Lévy flights for residential burglary models. Math. Models Methods Appl. Sci. 28, 18571880.CrossRefGoogle Scholar
Paquin-Lefebvre, F., Nagata, W. & Ward, M. J. (2019) Pattern formation and oscillatory dynamics in a 2-D coupled bulk-surface reaction-diffusion system. SIAM J. Appl. Dyn. Syst. 18, 13341390.CrossRefGoogle Scholar
Peszat, S. & Zabczyk, J. (2007) Stochastic partial differential equations with Lévy noise, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pitcher, A. B. (2010) Adding police to a mathematical model of burglary. Euro. J. Appl. Math. 21, 401419.CrossRefGoogle Scholar
Protter, P. E. (2005) Stochastic Integration and Differential Equations, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Rodríguez, N. (2013) On the global well-posedness theory for a class of PDE models for criminal activity. Phys. D 260, 191200.CrossRefGoogle Scholar
Rodríguez, N. & Bertozzi, A. L. (2010) Local existence and uniqueness of solutions to a PDE model for criminal behavior. Math. Models Methods Appl. Sci. 20, 14251457.CrossRefGoogle Scholar
Saldaña, J., Aguareles, M., Avinyó, A., Pellicer, M. & Ripoll, J. (2018) An age-structured population approach for the mathematical modeling of urban burglaries. SIAM J. Appl. Dyn. Syst. 17, 27332760.CrossRefGoogle Scholar
Shen, H., and Wang, D., Song, C. & Barabási, A. (2014) Modeling and predicting popularity dynamics via reinforced poisson processes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI Press, pp. 291297.Google Scholar
Short, M. B., Bertozzi, A. L. & Brantingham, P. J. (2010) Nonlinear patterns in urban crime: hotspots, bifurcations, and suppression. SIAM J. Appl. Dyn. Syst. 9, 462483.CrossRefGoogle Scholar
Short, M. B., Brantingham, P. J., Bertozzi, A. L. & Tita, G. E. (2010) Dissipation and displacement of hotspots in reaction-diffusion models of crime. Proc. Natl. Acad. Sci. 107, 39613965.CrossRefGoogle Scholar
Short, M. B., D’Orsogna, M. R., Brantingham, P. J. & Tita, G. E. (2009) Measuring and modeling repeat and near-repeat burglary effects. J. Quant. Criminol. 25, 325339.CrossRefGoogle Scholar
Short, M. B., D’Orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. & Chayes, L. B. (2008) A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18, 12491267.CrossRefGoogle Scholar
Short, M. B., Mohler, G. O., Brantingham, P. J. & Tita, G. E (2014) Gang rivalry dynamics via coupled point process networks. Discrete Contin. Dyn. Syst. Ser. B 19, 14591477.Google Scholar
Snook, B. (2004) Individual differences in distance travelled by serial burglars. J. Investig. Psych. Offender Profil. 1, 5366.CrossRefGoogle Scholar
Stroock, D. W. & Varadhan, S. R. S. (2006) Multidimensional Diffusion Processes. Springer-Verlag, Berlin.Google Scholar
Tóth, B. & Valkó, B. (2003) Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws. J. Statist. Phys. 112, 497521.CrossRefGoogle Scholar
Tse, W. H. & Ward, M. J. (2016) Hotspot formation and dynamics for a continuum model of urban crime. Euro. J. Appl. Math. 27, 583624.CrossRefGoogle Scholar
Tse, W. H., & Ward, M. J. (2018). Asynchronous instabilities of crime hotspots for a 1-D reaction-diffusion model of urban crime with focused police patrol. SIAM J. Appl. Dyn. Syst. 17, 20182075.CrossRefGoogle Scholar
Tzou, J., Ward, M. J & Wei, J. (2018) Anomalous scaling of Hopf bifurcation thresholds for the stability of localized spot patterns for reaction-diffusion systems in 2-D. SIAM J. Appl. Dyn. Sys. 17, 9821022.CrossRefGoogle Scholar
van Koppen, P. J. & Jansen, R. W. J. (1998) The road to the robbery: Travel patterns in commercial robberies. Brit. J. Criminol. 38, 230246.CrossRefGoogle Scholar
Varadhan, S. R. S. (1994) Entropy methods in hydrodynamic scaling. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Zürich, Birkhäuser, Basel, pp. 196208,Google Scholar
Varadhan, S. R. S. (2000) Lectures on hydrodynamic scaling. In: Hydrodynamic Limits and Related topics, Amer. Math. Soc., Providence, RI, pp. 340.Google Scholar
Wang, C., Zhang, Y., Bertozzi, A. L. & Short, M. B (2019) A stochastic-statistical residential burglary model with finite size effects. In: Active Particles., Vol. 2, Modeling and Simulation in Science, Engineering and Technology, Springer Nature Switzerland AG, in press.Google Scholar
Ward, M. J. (2018) Spots, traps, and patches: asymptotic analysis of localized solutions to some linear and nonlinear diffusive processes. Nonlinearity 31, R189 (53 pages).CrossRefGoogle Scholar
Wilso, J. Q. & Kelling, G. L. (1982) Broken windows: The police and neighborhood safety, Atlantic Mon. 249, 2938.Google Scholar
Wu, Y., Zhou, C., Xiao, J., Kurths, J. & Schellnhuber, H. J. (2010) Evidence for a bimodal distribution in human communication. Proc. Natl. Acad. Sci. U S A. 105, 1880318808.CrossRefGoogle Scholar
Zipkin, J. R., Short, M. B. & Bertozzi, A. L. (2014) Cops on the dots in a mathematical model of urban crime and police response. Discrete Contin. Dyn. Syst. Ser. B 19, 14791506.Google Scholar