Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T01:03:58.906Z Has data issue: false hasContentIssue false

Three-dimensional solutions of nonlinear degenerate diffusion-convection processes

Published online by Cambridge University Press:  16 July 2009

Gérard Gagneux
Affiliation:
Université de Pau et C.N.R.S., Laboratoire de Mathématiques Appliquées, URA 1204–C.N.R.S., Avenue de l'Université, 64000 Pau, France
Monique Madaune-Tort
Affiliation:
Université de Pau et C.N.R.S., Laboratoire de Mathématiques Appliquées, URA 1204–C.N.R.S., Avenue de l'Université, 64000 Pau, France

Abstract

The main objective of this work is to present, for practical use, some original results about several qualitative properties of the solutions of a large class of degenerate diffusion-convection equations arising from fluid mechanics. Current interest in models of the simultaneous motion of two immiscible incompressible liquids results from its significance for many applied fields such as, for instance, the theoretical modelling of oil reservoirs where the pores of a threedimensional porous medium contain some hydrocarbon component (oil). In secondary recovery, a second inexpensive fluid (water) is injected into the porous medium in order to push the oil towards the producing wells.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Alvarez, L., Diaz, J. I. & Kersner, R. 1988 On the initial growth of the interfaces in nonlinear diffusion-convection processes. In Ni, W. M. (editor), Nonlinear dffusion Equations and their equilibrium: Conference Proceedings. Springer-Verlag.Google Scholar
Antontsev, S. N. & Domanski, A. B. 1984 Uniqueness generalized solutions of degenerated problem two phase filtration. In Sbornik, T. (editor), Numerical methods mechanics continuum medium, Collection Sciences Research 15 (6), 1528 (en russe).Google Scholar
Antontsev, S. N., Diaz, J. I. & Véon, L. 1988 On space or time localization of solutions of nonlinear elliptic or parabolic equations via energy methods. Recent advances in nonlinear elliptic and parabolic problems. Longman Scientific & Technical, 314.Google Scholar
Aatontsev, S. N., Kazhikhov, A. V. & Monakhov, V. N. 1990 Boundary value problems in mechanics of nonhomogeneous fluids. Studies in Math. and its Appl. 22.Google Scholar
Artola, M. 1986 Sur une classe de problèmes paraboliques quasi linéaires. Bolletino U.M.I.— (6) (5-B), 5170.Google Scholar
Benilan, P. 1972 Equations d'évolution dans un espace de Banach quelconque Ct applications. These de Doctorat d'Etat, Orsay, France.Google Scholar
Brezis, H. 1972 Problémes unilatéraux. J. Math. Pures Appl. 51, 1168.Google Scholar
Chalabi, A. & Vila, J. P. 1989 On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws. M2AN 23 (2), 261282.Google Scholar
Chavent, G. & Jaffre, J. 1986 Mathematical models and finite elements for reservoir simulation. Studies in Math. Appl. 17.Google Scholar
Diaz, J. I. & Kersner, R. 1987 On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium. J. DfJerential Equat. 69, 368403.Google Scholar
Diaz, J. I. & Kersner, R. 1988 On the behaviour and cases of nonexistence of the free boundary in a semibounded porous medium. J. Math. Analysis and Appl. 132 (1), 05 15, 281289.Google Scholar
Gagneux, G. 1983 Une étude théorique sur la modélisation de G. Chavent des techniques d'exploitation secondaire des gisements pétroliféres. J. Mécan. Théo. et Appl. 2 (1), 3356.Google Scholar
Gagneux, G. 1986 Une approche analytique nouvelle des modèles de la récupération secondée en ingénierie pétrolière. J. Mécanique théorique et Appl. 5, 320.Google Scholar
Gagneux, G., Lefevere, A. M. & Madaune-Tort, M. 1987 Une approche analytique d'un modèle black-oil des écoulements triphasiques compressibles en ingénierie pétrolière. J. Mecan Théo. Appl. 6 (4), 124.Google Scholar
Gagneux, G., Lefevere, A. M. & Madaune-Tort, M. 1988 Modélisation d'écoulements polyphasiques en milieu poreux par un systéme de problémes unilatéraux. M2AN 22 (3), 389415.Google Scholar
Jasor, M. J. & Madaune-Tort, M. 1990 Perturbations singuliéres d'un modèle des écoulements diphasiques incompressibles en milieux poreux. Publications du Laboratoire de Mathématiques Appliquées, URA 1204, CNRS de l'Université de Pau, France.Google Scholar
Kruzkov, S. N. & Sukorjanski, S. M. 1977 Boundary value problems for systems of equations of two phase porous flow type. Mat. Sbornik 33, 6280.CrossRefGoogle Scholar
Ladyzenskaya, O. A. 1953 Problèmes mixtes pour les équations hyperboliques. Moscou.Google Scholar
Lions, J. L. 1969 Quelques méthodes de rèsolution des problémes aux limites non linéaires. Dunod, Gauthier-Villars.Google Scholar
Marle, C. 1972 Cours de production t.4. Les écoulements polyphasiques en milieu poreux, ed. Technip. Paris.Google Scholar
Madaune-Tort, M. 1982 a Un résultat de perturbations singulières pour des inéquations variationnelles dégénérées. Annali di Matematica Pura ed Appl. CXXXI (IV), 117143.Google Scholar
Madaune-Tort, M. 1982 b Un théorème d'unicité pour des inéquations variationnelles paraboliques dégénérées. Comm. in Partial Differential Equations 7 (4), 433468.CrossRefGoogle Scholar
Pironneau, O. 1988 Méthodes des éléments finis pour les fluides. Collection Recherches en mathCniatiques appliquées, RMA 7, Masson.Google Scholar
Vol'pert, A. J. & Hudjaev, S. I. 1969 Cauchy's problem for degenerate second order quasi-linear parabolic equation. Math. U.S.S.R. Sbornik 7, 365387.CrossRefGoogle Scholar