Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T22:13:04.042Z Has data issue: false hasContentIssue false

Understanding rapid charge and discharge in nano-structured lithium iron phosphate cathodes

Published online by Cambridge University Press:  01 March 2021

M. CASTLE
Affiliation:
School and Mathematics and Physics, University of Portsmouth, Lion Terrace, PO1 3HF, UK email: michael.castle@port.ac.uk
G. RICHARDSON
Affiliation:
Mathematical Sciences, University of Southampton, University Rd., SouthamptonSO17 1BJ, UK email: g.richardson@soton.ac.uk The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11 0RA, UK email: jamie.michael.foster@gmail.com
J. M. FOSTER
Affiliation:
School and Mathematics and Physics, University of Portsmouth, Lion Terrace, PO1 3HF, UK email: michael.castle@port.ac.uk The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11 0RA, UK email: jamie.michael.foster@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Doyle–Fuller–Newman (DFN) model for the charge and discharge of nano-structured lithium iron phosphate (LFP) cathodes is formulated on the basis that lithium transport within the nanoscale LFP electrode particles is much faster than cell discharge, and is therefore not rate limiting. We present some numerical solutions to the model and show that for relevant parameter values, and a variety of C-rates, it is possible for sharp discharge fronts to form and intrude into the electrode from its outer edge(s). These discharge fronts separate regions of fully utilised LFP electrode particles from those that are not. Motivated by this observation an asymptotic solution to the model is sought. The results of the asymptotic analysis of the DFN model lead to a reduced order model, which we term the reaction front model (or RFM). Favourable agreement is shown between solutions to the RFM and the full DFN model in appropriate parameter regimes. The RFM is significantly cheaper to solve than the DFN model, and therefore has the potential to be used in scenarios where computational costs are prohibitive, e.g. in optimisation and parameter estimation problems or in engineering control systems.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Amin, R. & Chiang, Y. M. (2016) Characterization of electronic and Ionic transport in \[{\text{L}}{{\text{i}}_{{\text{1}} - x}}{\text{N}}{{\text{i}}_{{\text{0}}{\text{.33}}}}{\text{M}}{{\text{n}}_{{\text{0}}{\text{.33}}}}{\text{C}}{{\text{o}}_{{\text{0}}{\text{.33}}}}{{\text{O}}_{\text{2}}}{\text{ (NM}}{{\text{C}}_{{\text{333}}}}{\text{)}}\] and \[{\text{L}}{{\text{i}}_{{\text{1}} - x}}{\text{N}}{{\text{i}}_{{\text{0}}{\text{.50}}}}{\text{M}}{{\text{i}}_{{\text{0}}{\text{.20}}}}{\text{C}}{{\text{o}}_{{\text{0}}{\text{.30}}}}{{\text{O}}_{\text{2}}}{\text{ (NM}}{{\text{C}}_{{\text{523}}}}{\text{)}}\] as a function of Li content. J. Electrochem. Soc. 163(8), A1512A1517.CrossRefGoogle Scholar
Bai, P., Cogswell, D. A. & Bazant, M. Z. (2011) Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11, 48904896.CrossRefGoogle Scholar
Bazant, M. Z. (2013) Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Accounts Chem. Res. 46(5), 11441160.CrossRefGoogle ScholarPubMed
Blomgren, G. (2017) The development and future of Lithium Ion batteries. J. Electrochem. Soc. 164(1), A5019A5025.CrossRefGoogle Scholar
Bockris, J. O. M., Reddy, A. K. N. & Gamboa-Aldeco, M. (2000) Modern Electrochemistry 2A Fundamentals of Electrodics, 2nd ed., Kluwer Academic/Plenum Publishers.Google Scholar
Bruggeman, D. A. G. (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 24(132), 636.CrossRefGoogle Scholar
Ciucci, F. & Lai, W. (2011) Derivation of micro/macro Lithium battery models from homogenization. Transp. Porous Med. 88(2), 249270.CrossRefGoogle Scholar
Dargaville, S. (2013) Mathematical Modelling of LiFePO4 Cathodes. PhD thesis, Queensland University of Technology.Google Scholar
Dargaville, S. & Farrell, T. W. (2013) A comparison of mathematical models for phase-change in high-rate LiFePO4 cathodes. Electrochimica Acta 111, 474490.CrossRefGoogle Scholar
Dargaville, S., Farrell, T. W. & Troy, W. (2010) Predicting active material utilisation in LiFePO4 electrodes using a multi-scale mathematical model. J. Electrochem. Soc. 157(7), A830A840.CrossRefGoogle Scholar
Denis, Y., Yu, D., Donoue, K., Inoue, T., Fujimoto, M. & Fujitani, S. (2006). Effect of electrode parameters on LiFePO4 cathodes. J. Electrochem. Soc. 153(5), A835.Google Scholar
Doyle, M., Fuller, T. F. & Newman, J. (1993) Modeling of galvanostatic charge and discharge of the lithium-polymer-insertion cell. J. Electrochem. Soc. 140(6), 15261533.CrossRefGoogle Scholar
Ellis, B. L., Lee, K. T. & Nazar, L. F. (2010) Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22(3), 691714.CrossRefGoogle Scholar
Ender, M., Weber, A. & Ivers-Tiffée, E. (2013) A novel method for measuring the effective conductivity and the contact resistance of porous electrodes for lithium-ion batteries. Electrochem. Comms. 34, 130133.CrossRefGoogle Scholar
Farkhondeh, M., Pritzker, M., Fowler, M. & Delacourt, C. (2017) Mesoscopic modeling of a LiFePO4Electrode: experimental validation under continuous and intermittent operating conditions. J. Electrochem. Soc. 164(11), E3040E3053.CrossRefGoogle Scholar
Farrell, T., Please, C., McElwain, D. & Swinkels, D. (2000) Primary Alkaline battery cathodes a three-scale model. J. Electrochem. Soc. 147(11), 4034.CrossRefGoogle Scholar
Ferguson, T. R. & Bazant, M. Z. (2014) Phase transformation dynamics in porous battery electrodes. Electrochimica Acta 146, 8997.CrossRefGoogle Scholar
Fuller, T. F., Doyle, M. & Newman, J. (1994) Simulation and optimisation of the dual lithium ion insertion cell. J. Electrochem. Soc. 141(1), 110.CrossRefGoogle Scholar
Harris, S. J., Timmons, A., Baker, D. R. & Monroe, C. (2010) Direct in situ measurements of Li transport in Li-ion battery negative electrodes. Chem. Phys. Lett. 485(4–6), 265274.CrossRefGoogle Scholar
Hindermann-Bischoff, M. & Ehrburger-Dolle, F. (2001) Electrical conductivity of carbon black-polyethylene composites experimental evidence of the change of cluster connectivity in the PTC effect. Carbon 39, 375382.CrossRefGoogle Scholar
Huang, H., Yin, S. C. & Nazar, L. F. (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 4, A170A172.CrossRefGoogle Scholar
Joachin, H., Kaun, T. D., Zaghib, K. & Prakasha, J. (2009) Electrochemical and thermal studies of Carbon-coated LiFePO4 cathode. J. Electrochem. Soc. 156(6), A401A406.CrossRefGoogle Scholar
Johns, P. A., Roberts, M. R., Wakizaka, Y., Sanders, J. H. & Owen, J. R. (2010) How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors. Electrochem. Comm. 11(11), 20892092.CrossRefGoogle Scholar
Jokar, A, Désilets, M., Lacroix, M. & Zaghib, K. (2018) Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite. J. Power Sources 379, 8490.CrossRefGoogle Scholar
Julien, C., Mauger, A., Trottier, J., Zaghib, K., Hovington, P. & Groult, H. (2016) Olivine-based blended compounds as positive electrodes for lithium batteries. Inorganics 4(2), 17.CrossRefGoogle Scholar
Kang, B. & Ceder, G. (2009) Battery materials for ultrafast charging and discharging. Nature 458, 190193.CrossRefGoogle ScholarPubMed
Korotkin, I., Richardson, G. & Foster, J. M. (2020) DandyLiion: a fast, and flexible open-source solver for Newman-type models of Li-ion batteries, TBC.Google Scholar
Li, Y., Gabaly, F. E., Ferguson, T. R., Smith, R. B., Bartelt, N. C., Sugar, J. D., Fenton, K. R., Cogswell, D. A., Jilcoyne, A. L. D., Tyliszczak, T., Bazant, M. Z. & Chueh, W. C. (2014) Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nature Materials 13, 11491156.CrossRefGoogle ScholarPubMed
Liu, Y., Liu, H., An, L., Zhao, X. & Liang, G. (2018) Blended spherical lithium iron phosphate cathodes for high energy density lithium–ion batteries. Ionics 25(1), 6169. doi:https://doi.org/10.1007/s11581-018-2566-7.CrossRefGoogle Scholar
Malik, R., Abdellahi, A. & Ceder, G. (2013) A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J. Electrochem. Soc. 160(5), A3179A3197.CrossRefGoogle Scholar
Malik, R., Burch, D., Bazant, M. & Ceder, G. (2010) Particle size dependence of the Ionic diffusivity. Nano Lett. 10, 41234127.CrossRefGoogle ScholarPubMed
Marquis, S. G., Sulzer, V., Timms, R., Please, C. P. & Chapman, S. J. (2019) An asymptotic derivation of a single particle model with electrolyte, arXiv preprint arXiv:1905.12553.Google Scholar
Mastali, M., Farkhondeh, M., Farhad, S., Fraser, R. & Fowler, M. (2016). Electrochemical modeling of commercial LiFePO4 and graphite electrodes: kinetic and transport properties and their temperature dependence. J. Electrochem. Soc. 163(13), A2803A2816.CrossRefGoogle Scholar
Ming, W., Jun, L. J., Ming, H. X., Han, W. & Rong, W. C. (2012) The effect of local current density on electrode design for lithium-ion batteries. J. Power Sources 207, 127133.Google Scholar
Nkulu, C. B. L., Casas, L., Haufroid, V., De Putter, T., Saenen, N. D., Kayembe-Kitenge, T., Obadia, P. M., Mukoma, D. K. W., Ilunga, J. M. L., Nawrot, T. S. & Numbi, O. L. (2018) Sustainability of artisanal mining of cobalt in DR Congo. Nature Sustainability 1(9), 495504.CrossRefGoogle Scholar
Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1997) Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 11881194.CrossRefGoogle Scholar
Park, M., Zhang, X., Chung, M., Less, G. B. & Sastry, A. M. (2010) A review of conduction phenomena in Li-ion batteries. J. Power Sources.CrossRefGoogle Scholar
Patel, K., Paulsen, J. & Desilvestro, J. (2003) Numerical simulation of porous networks in relation to battery electrodes and separators. J. Power Sources 122(2), 144152.CrossRefGoogle Scholar
Phillip, J. A. (2011) Investigations of Rate Limitation in Nanostructured Composite Electrodes and Experiments Towards a 3D Li-ion Microbattery. PhD thesis, University of Southampton.Google Scholar
Prada, E., Domenico, D. D., Creff, Y., Bernard, J., Sauvant-Moynot, V. & Huet, F. (2012) Simplified electrochemical and thermal model of LiFePO4-graphite Li-Ion batteries for fast charge applications. J. Electrochem. Soc. 159, A1508A1519.CrossRefGoogle Scholar
Prosini, P. P., Lisi, M., Zane, D. & Pasquali, M. (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1–2), 4551.CrossRefGoogle Scholar
Rajabloo, B., Jokar, A., Wakem, W., Désilets, M. & Brisard, G. (2018) Lithium iron phosphate electrode semi-empirical performance model. J. Appl. Electrochem. 48(6), 663674.CrossRefGoogle Scholar
Ranom, R. (2015) Mathematical modelling of lithium-ion batteries. PhD Thesis, University of Southampton.Google Scholar
Richardson, G., Denuault, G. & Please, C. P. (2012) Multiscale modelling and analysis of lithium-ion battery charge and discharge. J. Eng. Math. 72(1), 4172.CrossRefGoogle Scholar
Richardson, G., Korotkin, I., Ranom, R., Castle, M. & Foster, J. M. Generalised single particle models for high-rate operation of graded lithium-ion electrodes: systematic derivation and validation, arXiv preprint, arXiv :1907.09410.Google Scholar
Safari, M. & Delacourt, C. (2011) Mathematical modeling of lithium iron phosphate electrode: Galvanostatic charge/discharge and path dependence. J. Electrochem. Soc. 158(2), A63.CrossRefGoogle Scholar
Saroha, R., Panwar, A., Gaur, A., Sharma, Y., Kumar, V. & Tyagi, P. (2018) Electrochemical studies of novel olivine-layered (LiFePO4-Li2MnO3) dual composite as an alternative cathode material for lithium-ion batteries. J. Electrochem. Soc. 22(8), 25072513.Google Scholar
Srinivasan, V. & Newman, J. (2004) Design and optimization of a natural graphite/iron phosphate lithium-ion cell. J. Electrochem. Soc. 151(10), A1530A1538.CrossRefGoogle Scholar
Srinivasan, V. & Newman, J. (2004) Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151(10), A1517A1529.CrossRefGoogle Scholar
Stewart, S., Albertus, P., Srinivasan, V., Plitz, I., Pereira, N., Amatucci, G. & Newman, J. (2008) Optimizing the performance of lithium titanate spinel paired with activated carbon or iron phosphate. J. Electrochem. Soc. 155(3), A253.CrossRefGoogle Scholar
Stewart, S. & Newman, J. (2008) Measuring the salt activity coefficient in Lithium-battery electrolytes. J. Electrochem. Soc. 155(6), A458.CrossRefGoogle Scholar
Tesla, (2020) Annual Shareholder Meeting and Battery Day. Tesla, Inc. 901 Page Ave. Fremont, CA 94538. September 22.Google Scholar
Valoen, L. O. & Reimers, J. N. (2005) Transport properties of LIPF6-based Li-ion battery electrolytes. J. Electrochem. Soc. 152(5), A882A891.CrossRefGoogle Scholar
Wang, G. X., Bewlay, S. L., Konstantinova, K., Liu, H. K., Dou, S. X. & Ahn, J.-H. (2004) Physical and electrochemical properties of doped lithium iron phosphate electrodes. Electrochimica Acta 50, 443447.CrossRefGoogle Scholar
Wang, M., Li, J., He, X., Wu, H. & Wan, C. (2012) The effect of local current density on electrode design for lithium-ion batteries. J. Power Sources 207, 127133.CrossRefGoogle Scholar
Zheng, H., Li, J., Song, X., Liu, G. & Battaglia, V. S. (2012) A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim. Acta 71, 258265.CrossRefGoogle Scholar
https://patentimages.storage.googleapis.com/aa/bb/b0/e29140f2b7e47b/US6921608.pdf.Google Scholar