Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:14:05.494Z Has data issue: false hasContentIssue false

Archaeomagnetism, Methodology and Applications: Implementation and Practice of the Archaeomagnetic Method in France and Bulgaria

Published online by Cambridge University Press:  25 January 2017

Philippe Lanos
Affiliation:
Centre National de la Recherche Scientifique
Mary Kovacheva
Affiliation:
Palaeomagnetic Laboratory, Bulgarian Academy of Sciences
Annick Chauvin
Affiliation:
Laboratory of Palaeomagnetism, University of Rennes

Abstract

Recent improvements in archaeomagnetism applied to archaeological baked clay, in France and Bulgaria, are presented in this paper. After reviewing the historical development of the method in France and Bulgaria, and the principles of the method, we present sampling techniques for in situ structures (kilns and hearths) and sets of displaced materials (bricks or tiles). In the analysis protocol, we stress the importance of correcting the magnetic anisotropic effects especially for bricks. We also show how the problem of brittle specimens can be solved by induration. After a review of the published archaeomagnetic data currently available for France and Bulgaria, we present different smoothing techniques applied to data obtained in these countries. Finally, we present the usage of the variation curves of the geomagnetic elements in the past to calculate the archaeomagnetic dates. One of these techniques is based on a Bayesian approach, similar to the case of the dendro-chronological calibration of radiocarbon ages. The main goal of the paper is to highlight for the archaeologists the possibilities of archaeomagnetism for dating purposes and for other problems in archaeology, on the basis of the experience of the laboratories in France and Bulgaria. The developments of selected archaeomagnetic studies in other European countries are quoted and referenced.

Nous présentons ici les récents développements de l'archéomagnétisme en France et en Bulgarie, appliqué aux terres cuites archéologiques. Après un rappel du développement historique de la méthode dans ces pays, et un rappel des principes de la méthode, nous présentons les conditions d'échantillonnage concernant les structures en place (fours et foyers) ainsi que les lots de matériaux déplacés tels que les tuiles et briques. Dans le protocole d'analyse, nous insistons sur l'importance de la correction des effets de l'anisotropie d'aimantation thermorémanente, surtout pour les briques. Nous montrons aussi comment nous avons résolu le problème de l'induration des terres cuites non consolidées et friables. Après un tour d'horizon des données archeomagnétiques disponibles (publiées) pour la France et la Bulgarie, nous présentons les courbes obtenues après application de différentes méthodes de lissage. Enfin, nous presentons l'utilisation des courbes de variation des éléments du champ magnétique terrestre dans le passé pour déterminer les dates archéomagnétiques. L'une des techniques utilisées est basée sur une approche bayésienne, comme dans le cas de la calibration dendrochronologique des âges radiocarboniques.

Le principal but de cet article est d'informer les archéologues sur les applications de l'archéomagnétisme à l'archéologie, à des fins de datation et autres applications, à partir de l'expérience des laboratoires en France et en Bulgarie. Le développement des recherches archéomagnétiques dans les autres pays européens sont cités et la bibliographie est donnée.

Zusammenfassung

Zusammenfassung

In diesem Artikel werden jüngste Fortschritte bei der Analyse von Archäomagnetismus an archäologischem gebranntem Ton aus Frankreich und Bulgarien präsentiert. Zunächst werden die historische Entwicklung der Methodik und ihre Prinzipien beschrieben, bevor Techniken der Probenentnahme von in situ-Strukturen (Øfen und Herden) und Sets von verlagertem Material (Wand- und Dachziegel) präsentiert werden. Im Analyseprotokoll betonen wir die Bedeutung der Korrektur von magnetischen Anisotropie-Effekten, besonders für Wandziegel. Wir zeigen auch, wie das Problem von fragilen Bruchstücken durch Härtung gelöst werden kann. Nach einem Überblick über die bis jetzt vorliegenden Daten für Frankreich und Bulgarien präsentieren wir verschiedene Bereinigungen von Daten aus diesen Landern, z.B. durch eine Bayes'sche Methode, die der dendrochronologischen Kalibration von Radiokarbondaten ähnelt. Das Hauptziel dieser Arbeit ist es, Archäologlnnen die Möglichkeiten von Archäomagnetismus zu Datierungszwecken und anderen archäologischen Problemen aufzuzeigen, auf der Grundlage der Erfahrungen der Labors in Frankreich und Bulgarien. Die Entwicklungen bestimmter archäomagnetischer Untersuchungen in anderen Ländem werden ebenfalls angesprochen und zitiert.

Type
Articles
Copyright
Copyright © 1999 Sage Publications 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J. and Hawley, H.N., 1966. Magnetic dating III: further archaeomagnetic measurements in Britain. Archaeometry 9: 187197.Google Scholar
Aitken, M.J. and Hawley, H.N., 1967. Archaeomagnetic measurements in Britain IV. Archaeometry 10: 129135.Google Scholar
Aitken, M.J. and Weaver, G.H., 1962. Magnetic dating: some archaeomagnetic measurements in Britain. Archaeometry 5: 424.Google Scholar
Aitken, M.J., Hawley, H.N. and Weaver, G.H., 1963. Magnetic dating: further archaeomagnetic measurements in Britain. Archaeometry 6: 7680.Google Scholar
Aitken, M.J., Allsop, A., Bussell, G. and Winter, M., 1988. Determination of the intensity of the earth's magnetic field during archaeological times. Reliability of the Thellier technique. Review of Geophysics 26 (1): 312.Google Scholar
Aitken, M.J., Allsop, A., Bussell, G., Lirttzis, Y. and Winter, M., 1989. Geomagnetic intensity measurements using bricks from Greek churches of the first and second millennia AD. Archaeometry 31:77–87.Google Scholar
Barbetti, M.F., McElhtnny, M.W., Eduards, D.J. and Schmidt, P.W., 1977. Weathering processes in baked sediments and their effects on archaeomagnetic field-intensity measurements. Physics of the Earth and Planetary Interiors 13: 346356.Google Scholar
Batt, C.M., 1997. The British archaeomagnetic calibration curve: an objective treatment. Archaeometry 39 (1): 153168.CrossRefGoogle Scholar
Boyadziev, Y., 1988. A contribution to the problem of the absolute chronology of the Eneolithic period (5th millennium BC) in the Balkan Peninsula. Studia Prehistorica, 9: 194209. (Edited in Bulgaria, Sofia.)Google Scholar
Boyadziev, Y., 1995. Chronology of prehistoric cultures in Bulgaria. In Bailey, D. and Panayotov, I. (eds), Prehistoric Bulgaria, Monographs in World Archaeology No. 22: 149192. Madison, WI: Prehistory Press.Google Scholar
Buck, C.E., Cavanagh, W.G. and Litton, C.D., 1996. The Bayesian Approach to Interpreting Archaeological Data. Chichester: J. Wiley.Google Scholar
Buck, C.E., Litton, C.D. and Smith, F.M., 1992. Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19: 497512.Google Scholar
Bucur, I., 1994. The direction of the terrestrial magnetic field in France, during the last 21 centuries. Recent progress. Physics of the Earth and Planetary Interiors 87: 95109.Google Scholar
Burakov, K.S., Burlatskaja, S.P., Nachassova, I. and Chelidze, Z.A., 1982. Geomagnetic field in Caucasus during the last 2000 years. Geomagnetism and Aeronomy 22 (3): 439440 (in Russian).Google Scholar
Burlatskaja, S.P., 1961. The ancient magnetic field in the region of Tbilissi based on the archaeomagnetic data. Geomagnetism and Aeronomy 1 (5): 803806 (in Russian).Google Scholar
Chauvin, A., Gillot, P.Y. and Bonhommet, N., 1991. Palaeointensity of the earth's magnetic field, recorded by two late Quaternary sequences at the Island of La Réunion (Indian Ocean). Journal of Geophysical Research 96 (B2): 19812006.Google Scholar
Clark, A.J., Tarling, D.H., and Noël, M., 1988. Developments in archaeomagnetic dating in Britain, Journal of Archaeological Sciences 15: 645667.Google Scholar
Coe, R.S., 1967. The determination of paleo-intensities of the earth's magnetic field with emphasis on mechanisms which could cause non-ideal behaviour in Thellier's method. Journal of Geomagnetism and Geoelectricity 19 (3): 157179.Google Scholar
Collectif, , 1991. Terroirs, territoires et campagnes antiques, la prospection archéologiques en haute-Bretagne, traitement et synthèse des données, sous la direction de L. Langouët. Revue Archéologique de l'Ouest, supplément 4 (Rennes):292.Google Scholar
Dehling, H. and Van der Plicht, J., 1993. Statistical problems in calibrating radiocarbon dates. Radiocarbon 3 (1): 239244.Google Scholar
Garcia, Y., 1996. Variation de l'intensité du champ magnétique terrestre en France durant les deux derniers millénaires. Thèse de doctorar, Université de Rennes 1. Mémoires de Géosciences-Rennes 74: 331.Google Scholar
Goulpeau, L. and Langouët, L., 1980. Datation d'apports de tuiles et briques sur des sites gallo–romains à l'aide de mesures archéomagnétiques opérées sur d'abondants échantillonnages. Revue d'Archéométrie 4: 153164.Google Scholar
Goulpeau, L., Lanos, Ph. and Langouët, L., 1989. The anisotropy as a disturbance of the archaeomagnetic dating method. In Maniatis, Y. (ed.), Archaeometry, Proceedings of the 25th International Symposium: 4558. Amsterdam and New York: Elsevier.Google Scholar
Green, P.J. and Silverman, B.W., 1994. Non-parametric Regression and Generalized Linear Models. A Roughness Penalty Approach. London: Chapman and Hall.Google Scholar
Jordanova, N., Karloukovski, V. and Spatharas, V., 1995. Magnetic anisotropy studies on Greek pottery and bricks. Bulgarian Geophysics Journal 21 (4): 4958.Google Scholar
Hrouda, F., 1982. Magnetic Anistropy of rocks and its application in geology and geophysics. Geophysical Survey 5: 3782.Google Scholar
Jordonova, N., 1996. The diagnostic magnetic methods in archaeomagnetism and their impact on the reliable dedetermination of the geomagnetic field paleointensity. , Sofia University (in Bulgarian).Google Scholar
Jordanova, N., Petrovsky, E. and Kovacheva, M., 1997. Preliminary rock magnetic study of archaeomagnetic samples from Bulgarian prehistoric sites. Journal of Geomagnetism and Geoelectricity 49: 543566.Google Scholar
Kovacheva, M., 1980. Summarized results of the archaeomagnetic investigations of the geomagnetic field variation for the last 8000 years in south-eastern Europe. Geophysical Journal of the Royal Astronomical Society 61: 5764.Google Scholar
Kovacheva, M., 1992. Updated archaeomagnetic results from Bulgaria: the last 2000 years. Physics of the Earth and Planetary Interiors 70 (3–4): 219223.Google Scholar
Kovacheva, M., 1995. Bulgarian archaeomagnetic studies. In Bailey, D. and Panayotov, I. (eds), Prehistoric Bulgaria, Monographs in World Archaeology No. 22: 209224. Madison, WI: Prehistory Press.Google Scholar
Kovacheva, M., 1997. Archaeomagnetic database from Bulgaria. Physics of the Earth and Planetary Interiors 102: 145151.Google Scholar
Kovacheva, M. and Toshkov, A., 1994. Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part I: The last 2000 years AD. Surveys in Geophysics 15: 673701.Google Scholar
Kovacheva, M., Jordanova, N. and Karloukovski, V., 1998. Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part II: The last 8000 years. Surveys in Geophysics 19 (5): 413460.CrossRefGoogle Scholar
Kovacheva, M., Pares, J., Jordanova, Dan and Karloukovski, V., 1995. A new contribution to the archaeomagnetic study of a Roman pottery kiln from Calahora (Spain). Geophysical Journal International 123: 931936.Google Scholar
Langouët, L., Bucur, I. and Goulpeau, L., 1983. Les problèmes de l'allure de la courbe de variation séculaire du champ magnétique terrestre en France, nouveaux résultats archéomagnétiques. Revue d'Archéométrie, 7: 3743.Google Scholar
Lanos, Ph., 1987a. Archéomagnétisme des matériaux déplacés, applications à la datation des matériaux de construction d'argile cuite en archéologie. Thèse de doctorat, Université de Rennes 1:317.Google Scholar
Lanos, Ph., 1987b. The effects of demagnetizing fields on thermoremanent magnetization acquired by parallel-sided baked clay blocks. Geophysical Journal of Royal Astronomical Society 91: 9851012.Google Scholar
Lanos, Ph., 1990. La datation archéomagnétique des matériaux de construction d'argile cuite, apports chronologiques et technologiques. Gallia 47: 321341.Google Scholar
Lanos, Ph., 1991. Datation archéomagnétique et habitat rural gallo-romain en Haute-Bretagne. In Terroirs, territoires et campagnes antiques, la prospection archéologique en Haute-Bretagne, traitement et synthèse des données. Revue Archéologique de l'Ouest, supplément 4:235253.Google Scholar
Lanos, Ph., 1994. Pratiques artisanales des briquetiers et archéomagnétisme des matériaux d'argile cuite, une histoire de positions de cuisson. Histoire & Mesure LX (3/4): 287304.Google Scholar
Lanos, Ph., 1997. Les thermes d'Evreux; annexe 4: analyses archéomagnétiques de 9 lots de briques. Documents Archéologiques de l'Ouest (DAO): 111124.Google Scholar
Lanos, Ph., in preparation. Bayesian approach using penalized maximum likelihood applied for smoothing time series carrying errors of both date and measure.Google Scholar
Laubenhemer, F. and Lanos, Ph., 1994. Chronologie des fours de potiers de Sallèles-d'Aude, archéomagnétisme et archeologie. In 1st European Workshop on Archaeological Ceramics, Rome, Università degli Studi di Roma ‘La Sapienza’, Dipartimento di Scienza della Terra: 251267.Google Scholar
Le Goff, M., Henry, B. and Daly, L., 1992. Practical method for drawing a VGP path. Physics of the Earth and Planetary Interiors 70: 201204.Google Scholar
Marton, P., 1996. Archaeomagnetic directions: the Hungarian calibration curve. In Morris, A. and Tarling, D. (eds), Palaeomagnetism and Tectonics of the Mediterranean Region. Geological Society Special publication No. 105: 385399.Google Scholar
Mennessier-Jouannet, Ch., Bucur, I., Evin, J., Lanos, Ph. and Miallier, D., 1995. Convergence de la typologie de céramiques et de trois méthodes chronométriques pour la datation d'un four de potier à Lezoux (Puy-de-Dome). Revue d'Archéométrie 19: 3747.Google Scholar
Michczynska, D.J., Pazdur, M.F. and Walandus, A., 1989. Bayesian approach to probabilistic calibration of radiocarbon dates. (PACT) 29 (II–4): 6979.Google Scholar
Rusakov, O. and Zagniy, F., 1973a. Archaeomagnetic secular variation study in the Ukraine and Moldavia. Archaeometry 15 (P 1): 153157.Google Scholar
Rusakov, O. and Zagniy, F., F., 1973b. Intensity of the geomagnetic field in the Ukraine and Moldavia during the past 6000 years. Archaeometry 15 (P 2): 275285.Google Scholar
Schnepp, E. and Pucher, R., 1998. Preliminary archaeomagnetic results from a floor sequence of a bread kiln in Lübeck (Germany). Studia geophysica et geodesia 42: 111.Google Scholar
Shaw, J., Walton, D., Yang, S., Rolph, T.C. and Share, J.A., 1996. Microwave archaeo-intensities from Peruvian ceramics. Geophysical Journal International 124: 241244.Google Scholar
Tanaka, H. and Kono, M., 1984. Analysis of the Thelliers' Method of Paleointensity Determination 2: Applicability to High and Low Magnetic Fields. Journal of Geomagnetism and Geoelectricity 36: 285297.Google Scholar
Tarling, D., 1983. Paleomagnetism. London and New York: Chapman and Hall.Google Scholar
Thellier, E., 1938. Sur l'aimantation des terres cuites et ses applications géo-physiques. Thèse de doctorat, Paris. Annales de l'Institut de Physique du Globe de Paris 16: 157302.Google Scholar
Thellier, E., 1981. Sur la direction du champ magnétique terrestre en France durant les deux derniers millénaires. Physics of the Earth and Planetary Interiors 24: 89132.Google Scholar
Thellier, E. and Thellier, O., 1959. Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Annuaire Geophysique 15: 285376.Google Scholar
Todorova, H., 1995. The Neolithic, Eneolithic and Transitional Period in Bulgarian Prehistory. In Bailey, D. and Panayotov, I. (eds), Prehistoric Bulgaria, Monographs in World Archaeology No. 22: 7999. Madison, WI: Prehistory Press.Google Scholar
Wahba, G., 1990. Spline Models for Observational Data. Philadelphia, PA: Society for Industrial and Applied Statistics.Google Scholar
Walton, D., Share, J., Rolph, T.C. and Shaw, J., 1993. Macrowave magnetisation. Geophysical Research Letters 20: 109111.Google Scholar