Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:28:27.625Z Has data issue: false hasContentIssue false

Asociación alélica entre repeticiones de dinucleótidos en los loci de la monoamino oxidasa y la esquizofrenia

Published online by Cambridge University Press:  12 May 2020

J. Wei
Affiliation:
Instituto de Psiquiatría, Asociación de Esquizofrenia de Great Britain, Bryn Hyfryd, The Crescent, Bangor, Gwynedd LL57 2AGReino Unido
G. P. Hemmings
Affiliation:
Instituto de Psiquiatría, Asociación de Esquizofrenia de Great Britain, Bryn Hyfryd, The Crescent, Bangor, Gwynedd LL57 2AGReino Unido
Get access

Resumen

Se determinaron dos microsatélites ligados al X, las repeticiones (AC)n en el locus A de la monoamino oxidasa (MAO) y (TG)n en el locus B de la MAO, utilizando un procedimiento basado en la reacción en cadena de la polimerasa (PCR) en 89 familias nucleares que constaban de madre, padre y descendiente mujer afectada con esquizofrenia o madre y descendiente varón afectado. Se aplicó un enfoque de riesgo relativo de haplotipo basado en el haplotipo (HHRR) para detectar la asociación alélica de estos dos microsatélites con la esquizofrenia. En las familias de los pacientes varones, se encontró una diferencia significativa en la distribución de frecuencias entre las repeticiones (TG)n transmitidas y no transmitidas (χ2 = 15,13, gl = 6, P = 0,019), y la prueba exacta de Fisher mostró que la frecuencia alélica de la (TG)24 transmitida era significativamente más alta que la de la (TG)24 no transmitida (P de Fisher = 0,003). Sin embargo, no se encontraron diferencias significativas en la distribución de frecuencias entre las repeticiones (TG)n transmitidas por la madre o por el padre y las no transmitidas en las familias de las pacientes mujeres. No se encontraron diferencias significativas en la distribución de frecuencias entre las repeticiones (AC)n transmitidas y no transmitidas en las familias de pacientes varones o de pacientes mujeres. El presente estudio indica que el gen MAO-B puede estar asociado con la esquizofrenia y el mecanismo genético subyacente de la esquizofrenia puede diferir entre los esquizofrénicos varones y mujeres individuales.

Type
Artículo Original
Copyright
Copyright © European Psychiatric Association 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Baron, M.Linkage results in schizophrenia. Am J Med Genet (Neuropsychiat Genet) 1996; 67: 121–3.CrossRefGoogle Scholar
Baron, M, Risch, N, Levitt, M, Gruen, R.Genetic analysis of platelet monoamine oxidase activity in families of schizophrenic patients. J Psychiat Res 1985; 19: 921.CrossRefGoogle ScholarPubMed
Bellodi, L, Bussoleni, C, Scorza-Smeraldi, R, Grassi, G, Zaechetti, L, Smeradi, E.Family study of schizophrenia: exploratory analysis for relevant factors. Schizophr Bull 1986; 12: 120–8.CrossRefGoogle ScholarPubMed
Black, GCM, Chen, Z-Y, Craig, IW, Powell, JF.Dinucleo-tide repeat polymorphism at the MAOA locus. Nucl Acids Res 1991; 19: 689.Google Scholar
Bowers, MB Jr.CSF acid monoamine metabolites as a possible reflection of central MAO activity in chronic schizophrenia. Biol Psychiatry 1976; 11: 245–9.Google Scholar
Carpenter, WT Jr, Murphy, DL, Wyatt, RJ.Platelet monoamine oxidase activity in acute schizophrenia. Am J Psychiatry 1975; 132: 438–41.Google ScholarPubMed
Charlesworth, B, Sniegowski, P, Stephan, W.The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 1994; 371: 215–20.CrossRefGoogle ScholarPubMed
Chen, Z-Y, Powell, JF, Hsu, Y-PP, Breakefield, XO, Craig, IW.Organization of the human monoamine oxidase genes and long-range physical mapping around them. Genomics 1992; 14: 7582.CrossRefGoogle Scholar
Crow, TJ.Is schizophrenia an infectious disease? Lancet 1983; 1: 173–5.CrossRefGoogle ScholarPubMed
DeLisi, LE, Devoto, M, Lofthouse, R, Poulter, M, Smith, A, Sheilds, Get al.Search for linkage to schizophrenia on the X and Y chromosomes. Am J Med Genet (Neu-ropsychit Genet) 1994; 54: 113–21.CrossRefGoogle ScholarPubMed
Friedman, E, Shopsin, B, Sathananthan, G, Gershon, S.Blood platelet monoamine oxidase activity in psychiatric patients. Am J Psychiatry 1974; 131: 1392–4.CrossRefGoogle ScholarPubMed
Goldstein, JM, Link, BG.Gender and the expression of schizophrenia. J Psychiat Res 1988; 22: 141–55.CrossRefGoogle ScholarPubMed
Goldstein, JM, Faraone, SV, Chen, WJ, Tolomiczencko, GS, Tsuang, MT.Sex differences in the familial transmission of schizophrenia. Br J Psychiatry 1990; 156: 819–60.CrossRefGoogle ScholarPubMed
Goldstein, JM, Tsuang, MT.Gender and schizophrenia: an introduction and synthesis of findings. Schizophr Bull 1990; 16: 179–83.CrossRefGoogle Scholar
Grimsby, J, Chen, K, Devor, EJ, Cloniger, CR, Shih, JC.Dinucleotide repeat (TG)23 polymorphism in the MAOB gene. Nucl Acids Res 1992; 20: 924.CrossRefGoogle ScholarPubMed
Groshong, R, Baldessarini, RJ, Gibson, A, Lipinski, JF, Axelrod, DA, Pope, A.Activities of types A and B MAO and catechol-O-methyltransferase in blood cells and skin fibroblasts of normal and chronic schizophrenic subjects. Arch Gen Psychiatry 1978; 35: 1198–205.CrossRefGoogle Scholar
Kochersperger, LM, Parker, EL, Siciliano, M, Darlington, GJ, Denney, RM.Assignment of genes for human monoamine oxidases A and B to the X chromosome. J Neurosci Res 1986; 16: 601–16.CrossRefGoogle Scholar
Lan, NC, Heinzmann, C, Gal, A, Klisak, I, Orth, U, Lai, E, et al.Human monoamine oxidase A and B genes map to Xpll.23 and are deleted in a patient with Norrie disease. Genomics 1989; 4: 552–9.CrossRefGoogle Scholar
Lesch, KP, Bengel, D, Heils, A, Sabol, SZ, Greenberg, BD, Petri, Set al.Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274:1527–31.CrossRefGoogle ScholarPubMed
Levinson, DF, Mahtani, MM, Nancarrow, DJ, Brown, DM, Kruglyak, L, Kirby, A, et al.Genome sean of schizophrenia. Am J Psychiatry 1988; 155: 741–50.Google Scholar
Mellon, CD, Byerley, WF.Strategies for linkage studies in schizophrenia. Schizophr Res 1989; 2: 277–85.CrossRefGoogle Scholar
Moises, HW, Yang, L, Krisbjarnason, H, Wiese, C, Byerley, W, Macciardi, F, et al.An international two-stage genome-wide search for schizophrenia susceptibility genes. Nature Genet 1995; 11: 321–4.CrossRefGoogle ScholarPubMed
Morgan, K, Morgan, L, Carpenter, K, Lowe, J, Lam, L, Cave, S, et al.Microsatellite polymorphism of the al-antichy-motrypsin gene locus associated with sporadic Alzheimer’s disease. Hum Genet 1997; 99: 2731.CrossRefGoogle ScholarPubMed
Murphy, DL, Weiss, R.Reduced monoamine oxidase activity in blood platelets from bipolar depressed patients. Am J Psyciatry 1972; 128: 1351–7.CrossRefGoogle ScholarPubMed
Murphy, DL, Wyatt, RJ.Reduced monoamine oxidase activity in blood platelets from schizophrenic patients. Nature 1972; 238: 225–6.CrossRefGoogle ScholarPubMed
Okoro, C, Bell, R, Sham, P, Nanko, S, Asherson, P, Owen, M, et al.No evidence for linkage between the X-chro-mosome marker DXS7 and schizophrenia. Am J Med Genet (Neuropsychiat Genet) 1995; 60: 461–4.CrossRefGoogle Scholar
Pulver, AE, Liang, K-Y, Brown, H, Wolyniec, P, McGrath, J, Adler, L, et al.Risk factors in schizophrenia: season of birth, gender, and familial risk. Br J Psychiatry 1992; 160: 6571.CrossRefGoogle ScholarPubMed
Shimizu, A, Kurachi, M, Yamaguchi, N, Torii, H, Isaki, K.Morbidity risk of schizophrenia to parents and siblings of schizophrenic patients. Jap J Psychiat Neurol 1987; 41: 6570.Google ScholarPubMed
Terwilliger, JD, Ott, J.A haplotype-based ‘haplotype relative risk’ approach to detecting allelic associations. Hum Hered 1992; 42: 337–46.CrossRefGoogle ScholarPubMed
Tripathi, J, Brahmachari, SK.Distribution of simple repetitive (TG/CA)n and (CT/AG)n sequences in human and rodent genomes. J Biomol Struct Dynamics 1991; 9: 387–97.CrossRefGoogle ScholarPubMed
Tsuang, MT, Faraone, SV.The case for heterogeneity in the etiology of schizophrenia. Schzophr Res 1995; 17: 161–75.CrossRefGoogle ScholarPubMed
Wei, J, Ramchand, CN, Hemmings, GPAssociation of polymorphic VNTR region in the first intron of the human TH gene with disturbances of the catecholamine pathway in schizophrenia. Psychiat Genet 1995; 5: 83–8.CrossRefGoogle Scholar
Wolyniec, PS, Pulver, AE, McGrath, JA, Tam, D.Schizophrenia: gender and familial risk. J Psychiat Res 1992; 26: 1727.CrossRefGoogle ScholarPubMed
Wyatt, RJ, Murphy, DL, Belmaker, R, Cohen, S, Donnelly, CH, Pollin, W.Reduced monoamine oxidase activity in platelets: a possible genetic marker for vulnerability to schizophrenia. Science 1973; 179: 916–8.CrossRefGoogle Scholar