Published online by Cambridge University Press: 23 March 2020
Emerging evidences indicate that the alteration of interhemispheric functional coordination may be involved in the pathogenesis of major depressive disorder (MDD). In present study, we aim to explore the potential marker by using the voxel-mirrored homotopic connectivity (VMHC) approach, which may be contributing to predict the clinical prognosis in MDD.
Eighty-two MDD patients and 50 normal control (NC) subjects participated in this study. We divided the MDD group into unremitted and remitted group according to the reduction rate of Hamilton Rating Scale for Depression (HAMD) within 2 weeks.
The study detected significantly decreased VMHC in bilateral precuneus (pCu), inferior temporal gyrus (ITG) and increased VMHC in middle frontal gyrus (MFG) and caudate nucleus when compared remitted depression (RD) group to unremitted depression (URD) group. Meanwhile, when compared with NC group, the URD group presented reduced VMHC in bilateral cerebellum anterior lobe, thalamus and postcentral gyrus. Furthermore, the VHMC in media frontal gyrus, postcentral gyrus and precentral gyrus were significantly decreased in RD group. Correlation analysis suggested that reduced VMHC in bilateral pCu was negatively correlated with the baseline HAMD score of URD (r = −0.325, P = 0.041). Receiver operating characteristic (ROC) curve indicated that three regional VMHC changes could identify depressed patient with poorer treatment response: ITG [area under curve (AUC) = 0.699, P = 0.002, 95% CI = 0.586–0.812], MFG (AUC = 0.692, P = 0.003, 95% CI = 0.580–0.805), pCu (AUC = 0.714, P = 0.001, 95% CI = 0.603–0.825).
The current study combined with previous evidence indicates that the subdued intrinsic interhemispheric functional connectivity might represents a novel neural trait involved in the pathophysiology of MDD.
The authors have not supplied their declaration of competing interest.
Comments
No Comments have been published for this article.