Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:44:33.726Z Has data issue: false hasContentIssue false

Cognitive control and reward/loss processing in Internet gaming disorder: Results from a comparison with recreational Internet game-users

Published online by Cambridge University Press:  23 March 2020

G. Dong*
Affiliation:
Department of Psychology, Zhejiang Normal University, 321004Jinhua, Zhejiang Province, PR China Institute of Psychological and Brain Sciences, Zhejiang Normal University, 321004Jinhua, Zhejiang Province, PR China
H. Li
Affiliation:
Department of Psychology, Zhejiang Normal University, 321004Jinhua, Zhejiang Province, PR China
L. Wang
Affiliation:
Department of Psychology, Zhejiang Normal University, 321004Jinhua, Zhejiang Province, PR China
M.N. Potenza*
Affiliation:
Department of Psychiatry, Department of Neurobiology, Child Study Center, and National Center on Addiction and Substance Abuse, Yale University School of MedicineNew Haven, CT06519, USA Connecticut Mental Health Center, 06519New Haven, CT, USA
*
* Corresponding author. Department of Psychology, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, PR China. Tel.: +86 158 679 499 09.
* Corresponding author. Department of Psychology, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, PR China. Tel.: +86 158 679 499 09.
Get access

Abstract

Although playing of Internet games may lead to Internet gaming disorder (IGD), most game-users do not develop problems and only a relatively small subset experiences IGD. Game playing may have positive health associations, whereas IGD has been repeatedly associated with negative health measures, and it is thus important to understand differences between individuals with IGD, recreational (non-problematic) game use (RGU) and non-/low-frequency game use (NLFGU). Individuals with IGD have shown differences in neural activations from non-gamers, yet few studies have examined neural differences between individuals with IGD, RGU and NLFGU. Eighteen individuals with IGD, 21 with RGU and 19 with NFLGU performed a color-word Stroop task and a guessing task assessing reward/loss processing. Behavioral and functional imaging data were collected and compared between groups. RGU and NLFGU subjects showed lower Stroop effects as compared with those with IGD. RGU subjects as compared to those with IGD demonstrated less frontal cortical activation brain activation during Stroop performance. During the guessing task, RGU subjects showed greater cortico-striatal activations than IGD subjects during processing of winning outcomes and greater frontal brain during processing of losing outcomes. Findings suggest that RGU as compared with IGD subjects show greater executive control and greater activations of brain regions implicated in motivational processes during reward processing and greater cortical activations during loss processing. These findings suggest neural and behavioral features distinguishing RGU from IGD and mechanisms by which RGU may be motivated to play online games frequently yet avoid developing IGD.

Type
Original article
Copyright
Copyright © European Psychiatric Association 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dong, GPotenza, MNA cognitive-behavioral model of Internet gaming disorder: theoretical underpinnings and clinical implications. J Psychiatr Res 2014; 58: 711. http://dx.doi.org/10.1016/j.jpsychires.2014.07.005.CrossRefGoogle ScholarPubMed
Dong, GPotenza, MNRisk-taking and risky decision-making in Internet gaming disorder: Implications regarding online gaming in the setting of negative consequences. J Psychiatr Res 2016; 73: 18. http://dx.doi.org/10.1016/j.jpsychires.2015.11.011.CrossRefGoogle ScholarPubMed
Dowling, NAIssues raised by the DSM-5 internet gaming disorder classification and proposed diagnostic criteria. Addiction 2014; 109(9): 14081409. http://dx.doi.org/10.1111/add.12554.CrossRefGoogle ScholarPubMed
Petry, NMO’Brien, CPInternet gaming disorder and the DSM-5. Addiction 2013; 108(7): 11861187. http://dx.doi.org/10.1111/add.12162.CrossRefGoogle ScholarPubMed
Petry, NMRehbein, FKo, CHO’Brien, CPInternet gaming disorder in the DSM-5. Curr Psychiatry Rep 2015; 17(9): 72. http://dx.doi.org/10.1007/s11920-015-0610-0.CrossRefGoogle ScholarPubMed
Rehbein, FKliem, SBaier, DMossle, TPetry, NMPrevalence of Internet gaming disorder in German adolescents: diagnostic contribution of the nine DSM-5 criteria in a state-wide representative sample. Addiction 2015; 110(5): 842851. http://dx.doi.org/10.1111/add.12849.CrossRefGoogle Scholar
Jorgenson, AGHsiao, RCYen, CFInternet addiction and other behavioral addictions. Child Adolesc Psychiatr Clin N Am 2016; 25(3): 509520. http://dx.doi.org/10.1016/j.chc.2016.03.004.CrossRefGoogle ScholarPubMed
Kuss, DJL.-F.O., Internet addiction and problematic Internet use: a systematic review of clinical research. World J Psychiatr 2016; 6(1): 143176.10.5498/wjp.v6.i1.143CrossRefGoogle ScholarPubMed
Liu, LYip, SWZhang, JTWang, LJShen, ZJLiu, B, et al.Activation of the ventral and dorsal striatum during cue reactivity in Internet gaming disorder. Addict Biol 2016. http://dx.doi.org/10.1111/adb.12338.Google ScholarPubMed
Park, MChoi, JSPark, SMLee, JYJung, HYSohn, BK, et al.Dysfunctional information processing during an auditory event-related potential task in individuals with Internet gaming disorder. Transl Psychiatry 2016;6:e721. http://dx.doi.org/10.1038/tp.2015.215.CrossRefGoogle ScholarPubMed
Yuan, KYu, DCai, CFeng, DLi, YBi, Y, et al.Frontostriatal circuits, resting state functional connectivity and cognitive control in internet gaming disorder. Addict Biol 2016. http://dx.doi.org/10.1111/adb.12348.Google ScholarPubMed
American Psychiatric Association AP American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th ed., 2013Google Scholar
Griffiths, MDKing, DLDemetrovics, ZDSM-5 internet gaming disorder needs a unified approach to assessment. Neuropsychiatry 2014; 4(1): 14.10.2217/npy.13.82CrossRefGoogle Scholar
Griffiths, MDThe role of context in online gaming excess and addiction: some case study evidence. Int J Ment Health Addict 2010; 8(1): 119125.10.1007/s11469-009-9229-xCrossRefGoogle Scholar
King, DLDelfabbro, PHZajac, ITPreliminary validation of a new clinical tool for identifying problem video game playing. Int J Ment Health Addict 2011; 9(1): 7287.10.1007/s11469-009-9254-9CrossRefGoogle Scholar
Kuss, DJGriffiths, MDInternet gaming addiction: a systematic review of empirical research. Int J Ment Health Addict 2012; 10(2): 278296.10.1007/s11469-011-9318-5CrossRefGoogle Scholar
Viriyavejakul, CRecreational gaming behavior of undergraduate students in Thailand. Technol Teach Educ Ann 2008; 19(8): 4948Google Scholar
Desai, RAKrishnan-Sarin, SCavallo, DPotenza, MNVideo-gaming among high school students: health correlates. Gender differences, and problematic gaming. Pediatrics 2010;126(6):E1414E1424. http://dx.doi.org/10.1542/peds.2009-2706.CrossRefGoogle ScholarPubMed
Ferguson, CJDo angry birds make for angry children? A meta-analysis of video game influences on children's and adolescents’ aggression, mental health, prosocial behavior, and academic performance. Perspect Psychol Sci 2015; 10(5): 646666. http://dx.doi.org/10.1177/1745691615592234.CrossRefGoogle ScholarPubMed
Boxer, PGroves, CLDocherty, MVideo games do indeed influence children and adolescents’ aggression, prosocial behavior, and academic performance: a clearer reading of Ferguson (2015). Perspect Psychol Sci 2015; 10(5): 671673. http://dx.doi.org/10.1177/1745691615592239.CrossRefGoogle Scholar
Ferguson, CJPay no attention to that data behind the curtain: on angry birds, happy children, scholarly squabbles, publication bias, and why betas rule metas. Perspect Psychol Sci 2015; 10(5): 683691. http://dx.doi.org/10.1177/1745691615593353.CrossRefGoogle ScholarPubMed
Mishra, JAnguera, JAGazzaley, AVideo games for neuro-cognitive optimization. Neuron 2016; 90(2): 214218. http://dx.doi.org/10.1016/j.neuron.2016.04.010.CrossRefGoogle ScholarPubMed
Dong, GWang, LDu, XPotenza, MN. Gaming increases craving to gaming-related stimuli in individuals with Internet gaming disorder. Biol Psychiatr CNNI, 2. doi:10.1016/j.bpsc.2017.01.002.CrossRefGoogle Scholar
Hulka, LEisenegger, CPreller, KVonmoos, MJenni, DBendrick, K, et al.Altered social and non-social decision-making in recreational and dependent cocaine users. Psychol Med 2014; 44(05): 10151028.10.1017/S0033291713001839CrossRefGoogle ScholarPubMed
Smith, DGSimon Jones, PBullmore, ETRobbins, TWErsche, KDEnhanced orbitofrontal cortex function and lack of attentional bias to cocaine cues in recreational stimulant users. Biol Psychiatry 2014; 75(2): 124131. http://dx.doi.org/10.1016/j.biopsych.2013.05.019.CrossRefGoogle ScholarPubMed
Desai, RAPotenza, MNGender differences in the associations between past-year gambling problems and psychiatric disorders. Soc Psychiatry Psychiatr Epidemiol 2008; 43(3): 173183. http://dx.doi.org/10.1007/s00127-007-0283-z.CrossRefGoogle ScholarPubMed
Yip, SWDesai, RASteinberg, MARugle, LCavallo, DAKrishnan-Sarin, S, et al.Health/functioning characteristics, gambling behaviors, and gambling-related motivations in adolescents stratified by gambling problem severity: findings from a high school survey. Am J Addict 2011; 20(6): 495508. http://dx.doi.org/10.1111/j.1521-0391.2011.00180.x.CrossRefGoogle ScholarPubMed
Dong, GLin, XHu, YXie, CDu, XImbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder. Sci Rep 2015;5:9197. http://dx.doi.org/10.1038/srep09197.CrossRefGoogle ScholarPubMed
Dong, GLin, XZhou, HDu, XDecision-making after continuous wins or losses in a randomized guessing task: implications for how the prior selection results affect subsequent decision-making. Behav Brain Funct 2014;10:11. http://dx.doi.org/10.1186/1744-9081-10-11.CrossRefGoogle ScholarPubMed
Dong, GZhou, HZhao, XMale Internet addicts show impaired executive control ability: evidence from a color-word Stroop task. Neurosci Lett 2011; 499(2): 114118. http://dx.doi.org/10.1016/j.neulet.2011.05.047.CrossRefGoogle ScholarPubMed
Wang, LWu, LLin, XZhang, YZhou, HDu, X, et al.Dysfunctional default mode network and executive control network in people with Internet gaming disorder: independent component analysis under a probability discounting task. Eur Psychiatry 2016; 34: 3642. http://dx.doi.org/10.1016/j.eurpsy.2016.01.2424.CrossRefGoogle Scholar
Yuan, KQin, WYu, DBi, YXing, LJin, C, et al.Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Struct Funct 2015. http://dx.doi.org/10.1007/s00429-014-0982-7.Google ScholarPubMed
Dong, GDevito, EEDu, XCui, ZImpaired inhibitory control in ‘internet addiction disorder’: a functional magnetic resonance imaging study. Psychiatry Res 2012;203(2–3):153158. http://dx.doi.org/10.1016/j.pscychresns.2012.02.001.CrossRefGoogle ScholarPubMed
Dong, GZhou, HZhao, XImpulse inhibition in people with Internet addiction disorder: electrophysiological evidence from a Go/NoGo study. Neurosci Lett 2010; 485(2): 138142. http://dx.doi.org/10.1016/j.neulet.2010.09.002.CrossRefGoogle ScholarPubMed
Ko, CHHsieh, TJChen, CYYen, CFChen, CSYen, JY, et al.Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: a functional magnetic imaging study. Eur Arch Psychiatry Clin Neurosci 2014; 264(8): 661672. http://dx.doi.org/10.1007/s00406-013-0483-3.CrossRefGoogle ScholarPubMed
Everitt, BJHutcheson, DMErsche, KDPelloux, YDalley, JWRobbins, TWThe orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann N Y Acad Sci 2007; 1121: 576597. http://dx.doi.org/10.1196/annals.1401.022.CrossRefGoogle ScholarPubMed
London, EDErnst, MGrant, SBonson, KWeinstein, AOrbitofrontal cortex and human drug abuse: functional imaging. Cereb Cortex 2000; 10(3): 334342.10.1093/cercor/10.3.334CrossRefGoogle ScholarPubMed
Schoenbaum, GShaham, YThe role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry 2008; 63(3): 256262. http://dx.doi.org/10.1016/j.biopsych.2007.06.003.CrossRefGoogle ScholarPubMed
Potenza, MNBalodis, IMFranco, CABullock, SXu, JChung, T, et al.Neurobiological considerations in understanding behavioral treatments for pathological gambling. Psychol Addict Behav 2013; 27(2): 380392. http://dx.doi.org/10.1037/a0032389.CrossRefGoogle ScholarPubMed
Volkow, NDLi, TKDrug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci 2004; 5(12): 963970. http://dx.doi.org/10.1038/nrn1539.CrossRefGoogle ScholarPubMed
Clark, LDisordered gambling: the evolving concept of behavioral addiction. Ann N Y Acad Sci 2014; 1327: 4661. http://dx.doi.org/10.1111/nyas.12558.CrossRefGoogle ScholarPubMed
Dong, GHu, YLin, XLu, QWhat makes Internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biol Psychol 2013; 94(2): 282289. http://dx.doi.org/10.1016/j.biopsycho.2013.07.009.CrossRefGoogle ScholarPubMed
Dong, GHuang, JDu, XEnhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. J Psychiatr Res 2011; 45(11): 15251529. http://dx.doi.org/10.1016/j.jpsychires.2011.06.017.CrossRefGoogle ScholarPubMed
Buhler, MVollstadt-Klein, SKobiella, ABudde, HReed, LJBraus, DF, et al.Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry 2010; 67(8): 745752. http://dx.doi.org/10.1016/j.biopsych.2009.10.029.CrossRefGoogle Scholar
Carpenter, MJSaladin, MELaRowe, SDMcClure, EASimonian, SUpadhyaya, HP, et al.Craving, cue reactivity, and stimulus control among early-stage young smokers: effects of smoking intensity and gender. Nicotine Tob Res 2014; 16(2): 208215. http://dx.doi.org/10.1093/ntr/ntt147.CrossRefGoogle ScholarPubMed
Watson, NLCarpenter, MJSaladin, MEGray, KMUpadhyaya, HPEvidence for greater cue reactivity among low-dependent vs. high-dependent smokers. Addict Behav 2010; 35(7): 673677. http://dx.doi.org/10.1016/j.addbeh.2010.02.010.CrossRefGoogle ScholarPubMed
Yen, J.-Y.Cheng-Fang, YChen, C.-S.Chang, Y.-H.Yeh, Y.-C.Ko, C.-H.The bidirectional interactions between addiction, behaviour approach and behaviour inhibition systems among adolescents in a prospective study. Psychiatr Res 2012; 200(2): 588592.10.1016/j.psychres.2012.03.015CrossRefGoogle ScholarPubMed
Lecrubier, YSheehan, DVWeiller, EAmorim, PBonora, IHarnett Sheehan, K, et al.The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur Psychiatr 1997; 12(5): 224231.10.1016/S0924-9338(97)83296-8CrossRefGoogle Scholar
Beck, ATWard, CHMendelson, MMock, JErbaugh, JAn inventory for measuring depression. Arch Gen Psychiatry 1961; 4(6): 561571. http://dx.doi.org/10.1001/archpsyc.1961.01710120031004.CrossRefGoogle ScholarPubMed
Young, KS (2009, Jan. 2010). Internet Addiction Test (IAT). Retrieved from http://netaddiction.com/index.php?option=combfquiz&view=onepage&catid=46&Itemid=106.Google Scholar
Petry, NMRehbein, FGentile, DALemmens, JSRumpf, HJMossle, T, et al.An international consensus for assessing Internet gaming disorder using the new DSM-5 approach. Addiction 2014; 109(9): 13991406. http://dx.doi.org/10.1111/Add.12457.CrossRefGoogle ScholarPubMed
Widyanto, LGriffiths, MDBrunsden, VA psychometric comparison of the Internet addiction test, the Internet-related problem scale, and self-diagnosis. Cyberpsychol Behav Soc Netw 2011; 14(3): 141149. http://dx.doi.org/10.1089/cyber.2010.0151.CrossRefGoogle ScholarPubMed
Widyanto, LMcMurran, MThe psychometric properties of the Internet addiction test. Cyberpsychol Behav 2004; 7(4): 443450. http://dx.doi.org/10.1089/cpb.2004.7.443.CrossRefGoogle ScholarPubMed
Potenza, MNLeung, HCBlumberg, HPPeterson, BSFulbright, RKLacadie, CM, et al.An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. Am J Psychiatry 2003; 160(11): 19901994. http://dx.doi.org/10.1176/appi.ajp.160.11.1990.CrossRefGoogle ScholarPubMed
DeVito, EEWorhunsky, PDCarroll, KMRounsaville, BJKober, HPotenza, MNA preliminary study of the neural effects of behavioral therapy for substance use disorders. Drug Alcohol Depend 2012; 122(3): 228235. http://dx.doi.org/10.1016/j.drugalcdep.2011.10.002.CrossRefGoogle ScholarPubMed
Dong, GHu, YLin, XReward/punishment sensitivities among internet addicts: implications for their addictive behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46: 139145. http://dx.doi.org/10.1016/j.pnpbp.2013.07.007.CrossRefGoogle ScholarPubMed
Krishnan-Sarin, SBalodis, IMKober, HWorhunsky, PDLiss, TXu, JS, et al.An exploratory pilot study of the relationship between neural correlates of cognitive control and reduction in cigarette use among treatment-seeking adolescent smokers. Psychol Addict Behav 2013; 27(2): 526532. http://dx.doi.org/10.1037/a0032479.CrossRefGoogle ScholarPubMed
Goldstein, RZVolkow, NDDysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 2011; 12(11): 652669. http://dx.doi.org/10.1038/nrn3119.CrossRefGoogle ScholarPubMed
Sofuoglu, MDeVito, EEWaters, AJCarroll, KMCognitive enhancement as a treatment for drug addictions. Neuropharmacology 2013; 64: 452463. http://dx.doi.org/10.1016/J. Neuropharm.2012.06.021.CrossRefGoogle ScholarPubMed
Dong, GLin, XZhou, HLu, QCognitive flexibility in internet addicts: fMRI evidence from difficult-to-easy and easy-to-difficult switching situations. Addict Behav 2014; 39(3): 677683. http://dx.doi.org/10.1016/j.addbeh.2013.11.028.CrossRefGoogle ScholarPubMed
Dong, GDeVito, EHuang, JDu, XDiffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. J Psychiatr Res 2012; 46(9): 12121216. http://dx.doi.org/10.1016/j.jpsychires.2012.05.015.CrossRefGoogle ScholarPubMed
Dutcher, JMCreswell, JDPacilio, LEHarris, PRKlein, WMLevine, JM, et al.Self-affirmation activates the ventral striatum: a possible reward-related mechanism for self-affirmation. Psychol Sci 2016. http://dx.doi.org/10.1177/0956797615625989.CrossRefGoogle ScholarPubMed
Jeong, BSHan, DHKim, SMLee, SWRenshaw, PFWhite matter connectivity and Internet gaming disorder. Addict Biol 2016; 21(3): 732742. http://dx.doi.org/10.1111/adb.12246.CrossRefGoogle ScholarPubMed
Nutt, DJLingford-Hughes, AErritzoe, DStokes, PRThe dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 2015; 16(5): 305312. http://dx.doi.org/10.1038/nrn3939.CrossRefGoogle ScholarPubMed
Tam, PG‘White matter connectivity and Internet gaming disorder’ and broader considerations in the field. Addict Biol 2015. http://dx.doi.org/10.1111/adb.12265.Google ScholarPubMed
Volkow, NDMorales, MThe brain on drugs: from reward to addiction. Cell 2015; 162(4): 712725. http://dx.doi.org/10.1016/j.cell.2015.07.046.CrossRefGoogle ScholarPubMed
Balodis, IMPotenza, MNAnticipatory reward processing in addicted populations: a focus on the monetary incentive delay task. Biol Psychiatry 2015; 77(5): 434444. http://dx.doi.org/10.1016/j.biopsych.2014.08.020.CrossRefGoogle ScholarPubMed
Limbrick-Oldfield, EHvan Holst, RJClark, LFronto-striatal dysregulation in drug addiction and pathological gambling: consistent inconsistencies?. Neuroimage Clin 2013; 2: 385393. http://dx.doi.org/10.1016/j.nicl.2013.02.005.CrossRefGoogle ScholarPubMed
Cavanagh, JFFrank, MJAllen, JJSocial stress reactivity alters reward and punishment learning. Soc Cogn Affect Neurosci 2011; 6(3): 311320. http://dx.doi.org/10.1093/scan/nsq041.CrossRefGoogle ScholarPubMed
Luijten, MO’Connor, DARossiter, SFranken, IHHester, REffects of reward and punishment on brain activations associated with inhibitory control in cigarette smokers. Addiction 2013; 108(11): 19691978. http://dx.doi.org/10.1111/add.12276.CrossRefGoogle ScholarPubMed
Whitmer, AJFrank, MJGotlib, IHSensitivity to reward and punishment in major depressive disorder: effects of rumination and of single versus multiple experiences. Cogn Emot 2012; 26(8): 14751485. http://dx.doi.org/10.1080/02699931.2012.682973.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Dong et al. supplementary material

Figure S1

Download Dong et al. supplementary material(PDF)
PDF 248.6 KB
Supplementary material: PDF

Dong et al. supplementary material

Figure S2

Download Dong et al. supplementary material(PDF)
PDF 286.7 KB
Supplementary material: PDF

Dong et al. supplementary material

Figure S3

Download Dong et al. supplementary material(PDF)
PDF 278 KB
Supplementary material: PDF

Dong et al. supplementary material

Figure S4

Download Dong et al. supplementary material(PDF)
PDF 287.4 KB
Supplementary material: PDF

Dong et al. supplementary material

Figure S5

Download Dong et al. supplementary material(PDF)
PDF 289.5 KB
Supplementary material: PDF

Dong et al. supplementary material

Table S1

Download Dong et al. supplementary material(PDF)
PDF 627.4 KB
Submit a response

Comments

No Comments have been published for this article.