Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T10:53:48.587Z Has data issue: false hasContentIssue false

Global stability of atmospheric oxygen

Published online by Cambridge University Press:  13 July 2009

Abstract

The atmospheric oxygen reserve is so huge that, in the short term of hundreds or thousands of years, only minor changes can be expected due to fossil fuel burning and deforestation. Each oxygen molecule passes through a living organism, on average, only once in 9000 years. As a consequence, the fastest regulating system must take of the order of hundreds of years. Nevertheless, it is possible that the actual oxygen level is not necessarily at the optimum level for life, but is just an accidental one in the course of the earth's history. Tropical forests are not the ‘lungs’ of the earth in terms of hundreds of years, but only on a much longer time scale, likewise for all other vegetation which produce humus and the long-term fossil carbon. The driving force is related to the slight differences caused by external factors between photosynthesis and respiration, with subsequent organic matter deposition or consumption for short time regulation of hundreds of years; while, for periods of millions of years, the regulation depends on changes of weathering or burial of fossil sedimentary organic matter.

Type
Research Article
Copyright
Copyright © Academia Europaea 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Le Péchon, J-C. (1992) Quality Standards in Manned Space Vehicles, ESA (European Space Agency), PSS03–401.Google Scholar
2.Broecker, W. S. (1970) Man's oxygen reserves. Science, 168, 15371538.CrossRefGoogle ScholarPubMed
3.Berkner, L. V. and Marshal, L. C. (1965 and 1966) On the origin and rise of oxygen concentration in the earth's atmosphere and limitation of oxygen concentration in a primitive planetary atmosphere. J. Atmos. Sci., 22, 225261 and 23, 133–146.2.0.CO;2>CrossRefGoogle Scholar
4.Budyko, M. I., Ronov, A. B. and Yanshin, A. L. (1987) History of the Earth's Atmosphere, Springer Verlag, Berlin.CrossRefGoogle Scholar
5.Machta, L. and Hughes, E. (1970) Atmospheric oxygen in 1967 to 1970. Science, 168, 15821584.CrossRefGoogle ScholarPubMed
6.Rutten, M. G. (1970) The history of atmospheric oxygen. Space Life Science, 2, 517.Google ScholarPubMed
7.Canuto, V. M., Levine, J. S., Augustsson, T. R. and Imhoff, C. L. (1982) UV radiation from the young sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature, 296, 816820.CrossRefGoogle Scholar
8.Cloud, P. E. (1974) Developments of earth's atmosphere. Ency. Britannica, 313319.Google Scholar
9.Degens, E. T. (1989) Perspectives on Biogeochemistry, Springer Verlag, Heidelberg.CrossRefGoogle Scholar
10.Frank, L. A., Sigwarth, J. B. and Craven, J. D. (1986) On the influx of small comets into the earth's upper atmosphere. I. Observations and II. Interpretation. Geophys. Res. Lett., 13/4, 303306, and 13/4, 307–310.CrossRefGoogle Scholar
11.Duursma, E. K. and Boisson, M., Oceans and atmospheric oxygen stability. Oceanologica Acta, submitted for publication.Google Scholar
12.Berner, R. A. and Canfield, D. E. (1989) A new model for atmospheric oxygen over phanerozoic time. Am. J. Sci., 289, 333361.CrossRefGoogle ScholarPubMed
13.Kump, L. R., The coupling of the carbon and sulfur biogeochemical cycles over phanerozoic time. NATO ARW, in press.Google Scholar
14.Kump, L. R., (1992) Oxygen, biochemical cycle. Encyclop. Earth Sci., 3, 515524.Google Scholar
15.Garrels, R. M. and Perry, E. A. (1974) Cycling of carbon, sulfur and oxygen through geologic time. In The Sea, Goldberg, E. (Ed.), J. Wiley, New York, vol. 5, 303316.Google Scholar
16.Watson, A., Lovelock, J. E. and Marguilis, L. (1978) Methanogenesis, fires and the regulation of atmospheric oxygen. BioSystems, 10, 293298.CrossRefGoogle ScholarPubMed
17.de Boer, P. L. (1986) Changes in the organic carbon burial during the Early Cretaceous. In North Atlantic Palaeoceanography, Summerhayes, C. P. and Shackleton, N. J. (Eds.), Geol. Soc. Spe. Publ., No. 21, 321331.Google Scholar
18.Hoyt, D. F. (1987) A new model of avian embryonic metabolism. J. Exp. Zool. Suppl., 1, 127138.Google ScholarPubMed
19.Vleck, C. M. and Hoyt, D. F. (1992) Metabolism and energetics of reptile and avian embryos. In Egg Incubation and its Effects in Embryonic Development in Birds and Reptiles, Ferguson, M. W. J. and Deeming, D. C. (Eds.), Cambridge University Press, Cambridge.Google Scholar
20.Stel, J. H. (1970) Dinausaurier eieren, het uitsterven van de dinausauriers. Natuur en Techniek, 38, 212.Google Scholar
21.Lenglet, G. (1991) La disparition des Dinosaures. Catalogue de I'Exposition Dinosaurs & Co., Fossil et Robots, Institut Royale des Sciences Naturelles de Belgique, 5559.Google Scholar
22.Chamberlain, J. W. (1978) Theory of Planetary Atmospheres. An Introduction to their Physics and Chemistry, Academic Press, London.Google Scholar
23.Gerlach, T. M. (1991) Present-day carbon dioxide emissions from volcanos. Earth in Space, 4, P. 5 & 14.Google Scholar
24.Le Cloarec, M-F. and Marty, B. (1991) Volatile fluxes from volcanoes. Terra Nova, 3, 1727.CrossRefGoogle Scholar
25.Buch, K., Harvey, H. W., Wattenberg, H. and Grippenberg, S. (1932) Ueber das Kohlensäuresystem in Meerwasser. Rapp. et Proces-Verb. des Réunions du Conseil Perm. Int. p. l'Explor. de la Mer, Vol. LXXIX, 170.Google Scholar
26.Bolin, B., Degens, E. T., Duvigneaud, P. and Kempe, S. (1979) The global biogeochemical carbon cycle. In The Global Carbon Cycle, Bolin, B., Degens, E. T., Kempe, S. and Ketner, P. (Eds.). Scope 13, John Wiley &. Sons, Chichester, UK, 156.Google Scholar
27.Berger, W. H., Smetacek, V. S. and Wefer, G. (1989) Ocean Productivity and Paleoproductivity—An Overview. In Productivity of the Ocean: Present and Past, Berger, W. H., Smetacek, V. S. and Wefer, G. (Eds.). John Wiley &. Sons, New York, 134.Google Scholar
28.Bowden, K. F. (1965) Currents and mixing in the ocean. In Chemical Oceanography, 1st edn.Riley, J. P. and Skirrow, G. (Eds.). Academic Press, London, vol. I, 4372.Google Scholar
29.Hall, D. O. and Rao, K. K. (1987) Photosynthesis, New Studies in Biology. Edward Arnold, 4th edn, pp. 122.Google Scholar
30.Keeling, R. F. and Shertz, S. R. (1992) Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature, 358, 723727.CrossRefGoogle Scholar
31.Berkaloff, A., Bourguet, J., Favard, P., Favard, N., Lacroix, J. C. (1981) Biologie et Physiologie Cellulaires. III Chloroplasts, Peroxysomes, Division Cellulaire, Edition Hermann, Paris.Google Scholar
32.Descolas-Gros, C. and Fontugne, M. (1990) Stable carbon isotope fractionation by marine phytoplankton during photosynthesis. Plant, Cell and Environment, 13, 207218.CrossRefGoogle Scholar
33.Harrison, W. G. and Platt, T. (1980) Variations in assimilation number of coastal marine phytoplankton: effects of environmental co-variates. J. Plankton Res., 2, 249260.CrossRefGoogle Scholar
34.Côté, B. and Platt, T. (1983) Day-to-day variations in the spring–summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr., 28, 320344.CrossRefGoogle Scholar
35.Werger, M. J. A. and Ellis, R. P. (1981) Photosynthetic pathways in the arid regions of South Africa. Flora, 171, 6475.CrossRefGoogle Scholar
36.Schmitt, M. R. and Edwards, G. E. (1981) Photosynthetic capacity and nitrogen use efficiency of maize, wheat and rice: a comparison between C3 and C4 photosynthesis. J. Experim. Botany, 32, 459466.CrossRefGoogle Scholar
37.de Boer, P. L. (1990, 1991) Astronomical cycles reflected in sediments. Zbl. Geol. Paläont. Teil I, H., 8, 911930.Google Scholar
38.Barnola, J. M., Raynaud, D., Korotkevich, Y. S. and Lorius, C. (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature, 329, 408414.CrossRefGoogle Scholar
39.Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. and Le Treut, H. (1990) The ice-core record: climate sensitivity and future greenhouse warming. Nature, 347, 139145.CrossRefGoogle Scholar
40.Legrand, M., Feniet-Saigne, C., Saltzman, E. S., Germain, C., Barkov, N. I. and Petrov, V. N. (1991) Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature, 350, 144146.CrossRefGoogle Scholar
41.Oppo, D. W. and Fairbanks, R. G. (1990) Atlantic Ocean thermohaline circulation of the last 150,000 years: relationship to climate and atmospheric CO2. Paleoceanograhy, 5, 277288.CrossRefGoogle Scholar
42.Stigebrandt, A. (1991) Computations of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas. Limnol. Oceanogr., 36, 444454.CrossRefGoogle Scholar