Published online by Cambridge University Press: 13 July 2009
Plants cannot themselves obtain their nitrogen from the air but rely mainly on the supply of combined nitrogen in the form of ammonia, or nitrates, resulting from nitrogen fixation by free-living bacteria in the soil or bacteria living symbiotically in nodules on the roots of legumes. Increased crop yields in the twentieth century required this biological nitrogen fixation to be supplemented increasingly by the use of fixed nitrogen from chemical fertilizers. The development of the Haber–Bosch process for catalytically combining atmospheric nitrogen with hydrogen from fossil fuels to produce ammonia enabled increased crop yields. However, energy and environmental concerns arising from the overuse of nitrogenous fertilizers have highlighted the need for plants to obtain more of their nitrogen from the air by biological nitrogen fixation. New systems are being developed for increased biological nitrogen fixation with cereals and other non-legumes by establishing nitrogen-fixing bacteria within their roots. This new inoculation technology is aimed at significantly reducing the use of synthetic nitrogenous fertilizers in world agriculture.