Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T08:51:58.821Z Has data issue: false hasContentIssue false

Application of naphthalene acetic acid and gibberellic acid favours fruit induction and development in oil palm hybrid (Elaeis oleifera x Elaeis guineensis)

Published online by Cambridge University Press:  26 September 2022

Daniel Gerardo Cayón Salinas
Affiliation:
Facultad Ciencias Agropecuarias, Universidad Nacional de Colombia, Carrera 32 no. 12-00, Vía Candelaria, Palmira, Valle del Cauca, Colombia
Gustavo Adolfo Ligarreto Moreno
Affiliation:
Facultad Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
Stanislav Magnitskiy*
Affiliation:
Facultad Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
Gustavo Rosero
Affiliation:
Guaicaramo SAS plantation, Km 7, vía Cabuyaro, Barranca de Upía, Meta, Colombia
Omaira Leguizamón
Affiliation:
Guaicaramo SAS plantation, Km 7, vía Cabuyaro, Barranca de Upía, Meta, Colombia
*
*Corresponding author. Email: svmagnitskiy@unal.edu.co

Summary

The OxG hybrid bunches contain more parthenocarpic fruits (PF) than normal fruits (NF) and present problems of development and ripening due to either an asynchronous opening of flowers or insufficient pollination. The objective of this study was to compare the effect of α-naphthaleneacetic acid (NAA) and gibberellic acid (GA3) in the induction and development of PF and NF, the fatty acid profile (FAP), and the oil potential in the ‘Coari x La Mé’ oil palm hybrid. NAA and GA3 induced parthenocarpy in the fruits and did not alter the FAP of the mesocarp oil. The commercial dose of pollen (0.9 g talc + 0.1 g pollen) resulted in increased bunch weight (BW) (20.8 kg) and lower percentage of PF in the bunch (65.4%). The most effective hormonal doses to induce the formation of PF in the bunch were NAA 300 and 600 mg L-1. GA3 alone or in mixture with NAA increased the percentage of PF but did not increase the BW, indicating that GA3 had no synergistic effect on BW. The NAA applications represent alternatives to complement assisted pollination of OxG hybrids to increase bunch production and oil yield.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarado, A., Bulgarelli, J. and Moya, B. (2000). Germinación del polen en poblaciones derivadas de un hibrido entre Elaeis guineensis Jacq. y E. oleífera HBK, Cortes. ASD Oil Palm Papers 20, 3536.Google Scholar
AOCS. (1994). Official and Recommended Methods of the American Oil Chemists’ Society. Champaign, IL: American Oil Chemists’ Society.Google Scholar
AOCS Ce 1-62. (1997). Official Methods and Recommended Practices of American Oil Chemist’ Society Method Ce 1-62. Fatty Acid Composition by Gas Chromatography. Champaign, IL: AOCS Press.Google Scholar
Awad, M.A. and Al–Qurashi, A.D. (2012). Gibberellic acid spray and bunch bagging increase bunch weight and improve fruit quality of ‘Barhee’ date palm cultivar under hot arid conditions. Scientia Horticulturae 138, 96100.CrossRefGoogle Scholar
Azcón–Bieto, J. and Talón, M. (2013). Fundamentos de Fisiología Vegetal. Barcelona: Graw Hill, Ediciones Mc.Google Scholar
Barcelos, E., Rios, S.A., Cunha, R.N.V., Lopes, R., Motoike, S.Y., Babiychuk, E., Skirycz, A. and Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers Plant Science 6, 190.CrossRefGoogle ScholarPubMed
Basri, M.W., Siti Nor Akmar, A. and Henson, I.E. (2005). Oil palm – achievements and potential. Plant Production Science 8, 288297.Google Scholar
Bastidas, S., Peña, E., Reyes, R., Pérez, J. and Tolosa, W. (2007). Comportamiento agronómico del cultivar híbrido RC1 de palma de aceite (Elaeis oleifera x Elaeis guineensis) x Elaeis guineensis . Corpoica Ciencia y Tecnología Agropecuaria 8, 511.CrossRefGoogle Scholar
Bennett, T. and Leyser, O. (2014). The auxin question, a philosophical overview. In Zazímalová, E., Petrásek, E. and Benková, E. (eds), Auxin and its Role in Plant Development. Vienna: Springer, pp. 319.CrossRefGoogle Scholar
Binder, B. and Patterson, S. (2009). Ethylene–dependent and –independent regulation of abscission. Stewart Postharvest Review 5, 110.Google Scholar
Bishop, G., Sakakibara, H., Seo, M. and Yamaguchi, S. (2015). Biosynthesis of hormones. In Buchanan, B.B., Gruissem, W. and Jones, R.L. (eds), Biochemistry and Molecular Biology of Plants. Chichester: Wiley, pp. 769833.Google Scholar
Breure, C.J. and Menendez, T. (1990). Determination of bunch yield components in the development of inflorescences in oil palm (Elaeis guineensis Jacq.). Experimental Agriculture 26, 99115.CrossRefGoogle Scholar
Cassiday, P. (2016). Una controversia de peso, cambiando paradigmas sobre las grasas saturadas. Palmas 37, 4153.Google Scholar
Choo, Y. and Nesaretnam, K. (2014). Research advancements in palm oil nutrition. European Journal of Lipid Science and Technology 116, 13011315.Google Scholar
Combres, J., Pallas, B., Rouan, L., Mialet–Serra, I., Caliman, J., Braconnier, S., Soulie, J. and Dingkuhn, M. (2013). Simulation of inflorescence dynamics in oilpalm and estimation of environment–sensitive phenological phases, a modelbased analysis. Functional Plant Biology 40, 263279.CrossRefGoogle Scholar
Corley, R.H.V and Breure, C.J. (1992). Fruiting activity, growth and yield of oil palm. I. Effects of fruit removal. Experimental Agriculture 28, 99109.CrossRefGoogle Scholar
Corley, R.H.V. and Tinker, P.B. (2016). The Oil Palm, 5th Edn. Oxford: John Wiley and Sons, Ltd., Wiley Blackwell.Google Scholar
Daza, E., Ayala-Díaz, I., Ruiz-Romero, R. and Romero, H.M. (2021). Effect of the application of plant hormones on the formation of parthenocarpic fruits and oil production in oil palm interspecific hybrids (Elaeis oleifera Cortes x Elaeis guineensis Jacq.). Plant Production Science 24, 354362.CrossRefGoogle Scholar
El–Kosary, O. (2009). Effect of GA3, NAA and cytophex spraying on Samany and Zaghloul date palm yield, fruit retained and characteristics. Journal Horticultural Sciences Ornamental Plants 1, 4959.Google Scholar
Engels, C., Kirkby, E. and White, P. (2012). Mineral nutrition, yield and source–sink relationships. In Marschner, P. (ed), Mineral Nutrition of Higher Plants. San Diego, CA: Elsevier, pp. 85131.CrossRefGoogle Scholar
García, J. and Yáñez, E. (2000). Aplicación de la metodología alterna para análisis de racimos y muestreo de racimos en tolva. Revista Palmas 21, 303311.Google Scholar
González, D., Cayón, G., López, J. and Alarcón, W. (2013). Development and maturation of fruits of two Indupalma OxG hybrids (Elaeis oleifera x Elaeis guineensis). Agronomía Colombiana 31, 343351.Google Scholar
Hardon, J. and Turner, P. (1967). Observations on natural pollination in commercial plantings of oil palm (Elaeis guineensis). Experimental Agriculture 3, 105116.CrossRefGoogle Scholar
Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental Experimental Botany 74, 916.CrossRefGoogle Scholar
Hormaza, P., Fuquen, E. and Romero, H. (2012). Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis . Scientia Agricola 69, 275280.CrossRefGoogle Scholar
Khosla, P. (2014). Efectos del aceite de palma en la salud humana. Más allá del perfil de ácidos grasos. Palmas 35, 5972.Google Scholar
Lagos, B., Bacca, T., Herrera, P. and Delgado, T. (2015). Biología reproductiva y polinización artificial del tomate de árbol (Cyphomandra betacea (Cav.) Sendt). Bolletin Cientifico Museo Historia Natural Universidad de Caldas 19, 6073.Google Scholar
Mesejo, C. (2012). Citricultura. El cuajado del fruto. Polinización y partenocarpia. Las giberelinas. Available at http://riunet.upv.es/bitstream/handle/10251/16898/Elcuajadodelfruto–polinizaciónypartenocarpia–lasgiberelinas.pdf?sequence=3 (accessed 19 June 2021).Google Scholar
Mondragón, A. and Pinilla, C. (2015). Aceite de palma alto oleico, propriedades fisicoquímicas y beneficios para la salud humana. Revista Palmas 36, 5766.Google Scholar
Montoya, C., Lopes, R., Flori, A., Cros, D., Cuéllar, T., Summo, M., Speout, S., Rivallan, R., Risterucci, A.–M., Bittencourt, D., Zambrano, J.R., Alarcón, W.H., Villeneuve, P., Pina, M., Nouy, B., Amblard, P., Ritter, E., Leroy, T. and Billotte, N. (2013). Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo–backcross from Elaeis oleifera (H.B.K.) cortés and oil palm (Elaeis guineensis Jacq.). Tree Genetics and Genomes 9, 12071225.CrossRefGoogle Scholar
Moreno, E., García, J.M., Díaz, C.A. and Ramírez, N.E. (2017). Optimización de la medición del potencial industrial de aceite. Palmas 38, 98107.Google Scholar
Mozzon, M., Pacetti, D., Lucci, P., Balzano, M. and Giuseppe Frega, N. (2013). Crude palm oil from interspecific hybrid Elaeis oleifera × Elaeis guineensis, fatty acid regiodistribution and molecular species of glycerides. Food Chemistry 141, 245252.CrossRefGoogle Scholar
Preciado, C., Bastidas, S., Betancourth, C., Peña, E. and Reyes, R. (2011a). Predicción y control de la cosecha en el híbrido interespecífico Elaeis oleifera x Elaeis guineensis en la zona palmera occidental de Colombia. I. Determinación del período de madurez para obtener racimos de alto contenido de aceite. Corpoica Ciencia y Tecnología Agropecuaria 12, 512.CrossRefGoogle Scholar
Preciado, C., Bastidas, S., Betancourth, C., Peña, E. and Reyes, R. (2011b). Predicción y control de la cosecha en el híbrido interespecífico Elaeis oleifera x Elaeis guineensis en la zona palmera occidental de Colombia. II. Determinación del ciclo de cosecha para obtener racimos de alto contenido de aceite. Corpoica Ciencia y Tecnología Agropecuaria 12, 1319.Google Scholar
Prieto, A., Ochoa, I. and Cayón, G. (2015). Efecto de la aplicación de Auxinas y Giberelinas en la Formación de Frutos Partenocárpicos en los Híbridos Elaeis oleífera H.B.K. Cortés x Elaeis guineensis Jacq. en Unipalma de los Llanos S.A. XVIII International Oil Palm Conference, September 22–25, 2015. Colombia: Cartagena de Indias.Google Scholar
Redshaw, M. (2012). Utilización de los residuos del campo y de los subproductos de la planta extractora. In Fairhurst, T.H. and Härdter, R. (eds), Palma de Aceite, Manejo para Rendimientos Altos y Sostenibles. Singapore: International Plant Nutrition Institute and International Potash Institute, pp. 337350.Google Scholar
Rivera, Y., Cayón, G. and López, J. (2013). Physiological and morphological characterization of American oil palms (Elaeis oleifera HBK cortes) and their hybrids (Elaeis oleifera x Elaeis guineensis) on the Indupalma plantation. Agronomía Colombiana 31, 314323.Google Scholar
Romero, H., Daza, E., Ayala–Díaz, I. and Ruiz–Romero, R. (2021). High–oleic palm oil (HOPO) production from parthenocarpic fruits in oil palm interspecific hybrids using naphthalene acetic acid. Agronomy 11, 290.CrossRefGoogle Scholar
Rosero, G., Santacruz, L., Rios, A. and Carvajal, S. (2017). Influencia del destape de la inflorescencia en la polinización asistida del híbrido OxG. Revista Palmas 38, 4962.Google Scholar
Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y. and Higashitani, N. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceeding of the National Academy of Sciences of the United States of America 107, 85698574.CrossRefGoogle ScholarPubMed
Sparnaaij, L. (1960). The analysis of bunch production in the oil palm. Journal of West African Institute for Oil Palm Research 3, 109180.Google Scholar
Syed, R. (1979). Studies on oil palm pollination by insects. Bulletin of Entomological Research 69, 213224.CrossRefGoogle Scholar
Taiz, L. and Zeiger, E. (2006). Stress physiology. In Taiz, L. and Zeiger, E. (eds), Plant Physiology. Sunderland, MA: Sinauer Associates, Inc., pp. 671681.Google Scholar
Tan, B., Ong, S., Rajanaidu, N. and Rao, V. (1985). Biological modification of oil composition. Journal of the American Oil Chemists’ Society 62, 230236.CrossRefGoogle Scholar
Tandon, R., Manohara, T., Nijalingappa, B. and Shivanna, K. (2001). Pollination and pollen–pistil interaction in oil palm, Elaeis guineensis . Annals of Botany 87, 831838.CrossRefGoogle Scholar
Thomas, R., Seth, A., Chan, K. and Ooi, S. (1973). Induced parthenocarpy in the oil palm. Annals of Botany 37, 447452.CrossRefGoogle Scholar
Vardi, A., Levin, I. and Carmi, N. (2008). Induction of seedlessness in Citrus, from classical techniques to emerging biotechnological approaches. Journal of the American Society for the Horticultural Science 133, 117126.CrossRefGoogle Scholar
Yáñez, E., García, J., Fernández, C. and Rueda, C. (2006). Guía de Análisis de Racimo. Bogotá: Cenipalma.Google Scholar
Zambrano, J. (2004). Los híbridos ínterespecíficos Elaeis oleifera H.B.K x Elaeis guineensis Jacq. Una alternativa de renovación para la Zona Oriental de Colombia. Palmas 25, 339349.Google Scholar